Development kit for DATAMAN 520
Programmer’s Guide
Version 2.00

DATAMAN

Copyright © 2004-2008 Dataman Programmers Ltd

Development kit for DATAMAN 520 series Programmer’s Guide

Thank you for choosing the Dataman 520 Series Ocilloscope with development Kit.
We believe it will meet your expectations.

For any further information or consultations, please contact us via phone or preferably
e-mail on the following address:

Address:
Dataman Programmers Ltd
Station Road
Maiden Newton
Dorset
DT2 0AE
United Kingdom

Phone:
Sales/General information: +44 (0) 1300 320719
Technical support: +44 (0) 1300 322903

Fax:
All Enquiries: +44 (0) 1300 321012
Internet:
URL: http://www.dataman.com/
e-mail: support@dataman.com - technical support

sales@dataman.com - sales
info@dataman.com - other information

http://www.dataman.com/
mailto:support@dataman.com
mailto:sales@dataman.com
mailto:info@dataman.com

Development kit for DATAMAN 520 series Programmer’s Guide

Contents

1. BaSiC INTOIMALION.......cuiiiiieiiiieieiee et 5
1.1. Development Kit CONTENEScoviiiiiieiieiieie e e 5
1.2. DeVelopMENT Kit USAQE.ccuviieiieieeieieesie e sieesieete st e ste e e te e s e e eeeneenes 5
1.2.1. Borland C++ and Borland C++ BUIlder.........ccccooviiieiiiiiiieeeeee e 5
1.2.2. INPriSE DeIPNI...c.ceciiiieciiee e 5
1.2.3. MICroSOft ViISUAI BASICccveeivieiiiiieiiieie ettt 5

2. Controlling the AEVICE.......cuviiecieece e e 6
P B L AV g (o= To 1o o USSR 6
2.2. Device INIAlIZALIONccoiiiiice e 6
2.3. Data aCqUISITION 100D ...ccviiiieiiiieiie st 6
2.4. Application terminationccceiiiieee e 8
3L RETBIEINCE ... bbb r e e 9
3.1, Initialization FUNCLIONSceeiiiiieiieee e 10
DEINITHAIAWAIE.......ei ittt re e 10
INIEHAIAWATE ...t 10
(0T To | B 1Y PSPPI 10
3.2. TrIQQEr TUNCLIONS.ccvi ittt ns 11
NS TC] il T o SRR URPRRTRORT 11
SEETIIGUEICOUNT.etieie ettt e re et e neesreenreaneennaeae s 11
SEtTHQUEILENGLN ... 12
SELTIIQUEIMOUE ...ttt e e reenre e s e sneeae s 12
SetAfterTriggerSampleSCOUNT..........coiiiiieere e 13
SetBeforeTrigQerDEIAYcoviieiieie et nae s 14
SEtPrIMAry TrIQQEISOUITE .. .ccuviiiieitieee ettt sttt sre e 14
SetSecoONdary TrHQUEISOUICEcveivveieeierieeieeeesieeeeseesteeeessaesteeseesreesreaneessaesaes 14
INVErtPriMary TrIQQEISOUICEcviiiieieeie ettt 15
INVertSecondary TrigQErSOUICEcviiveeieceesieeiestee e e steeste et sae e ns 15
3.3. TIME DaSe TUNCLIONSc.vieeiiie e 16
SEITIMEBASE ...ttt ettt bbbt 16
3.4. Vertical control FUNCLIONSccoeiiiiiiiieee e 17
SBEPTODE ...t rs 17
SBERANGE .ttt 17
SBEDIC .ttt ettt e e reereenes 18
SBEVBIT .. 18
3.5. Data acquisition FUNCHIONccooiiiiiiiiieice e 19
D L T TR OPPUPRTURRPRTORN 19
EnableWaveformConformityDeteCtioncccccveiirininieiieiesee e 20
SetDIgital SNIEIAING ...c..eceeeiece e 21
SetShaPEPIEICION ... 21
DEVICECONTEXL ...ttt bbbttt bbbt e b reenes 22
3.6. Other TUNCLIONS.....c.viiiieiieii ettt nns 24
ChECKCONNECLIONiiiiiiicieee ettt 24
ComMPENSALIONGENEIALONc.veveeiiieitieieeiieee ettt 24
(€121 B 1LV /=1 151 o] USSP PRRRR 24
GetDEVICEDIIVEIVEISIONveevieiiieitieie et e et sneenee s 25
GEtUSBDIIVEIVEISIONeiviivieieiie sttt sttt eneas 25
3.7.Visual BaSiC TUNCHIONScueiieiiiieiiesee e 26

Development kit for DATAMAN 520 series Programmer’s Guide

GEEDBNSIIES ..ttt e et e e e st e e e s e b r e s s s bt e e e e s eab e e e e s ebareeeaan 26
GEEDEBVICEID ...ttt sab e e eaae e 26
GEtDEVICEMEMOIYSIZEcuiieieieee ettt 26
GetDeVICEPOINTSPEIDIVIAERTcccvii ittt 27
GEETIMEBASES ... vveiieecteie ettt e et e ettt e e e st e e e s s b b e e e s s st beeesssabasaessbaeneesans 27
3.8. Constants USed INthe DKcuei i 27

Development kit for DATAMAN 520 series Programmer’s Guide

1. Basic information

1.1. Development Kit contents

Development kit software package has following structure:

Directory Contents
Examples\BorlandC Example (Borland C++ 5.01)
Examples\Delphi Example (Inprise Delphi 5.0)
Examples\VBasic Example (Microsoft Visual Basic 6.0)
Include Header files
Bin\Windows Libraries for Win98, Win2000 and WinXP

Table 1.1.1. -DK contents

1.2. Development Kit usage

This chapter contains information about setup necessary to use DK. It is important to
have em52X USB port driver installed before DK usage.

1.2.1. Borland C++ and Borland C++ Builder

Add header file DevKitConsts52X.h to your project. Dynamic libraries
DevKits2X.dll and M52XDrv.dll are required during runtime.

1.2.2. Inprise Delphi
Add unit DevKitConsts52X.pas to your project. Dynamic libraries DevKit52X.dIl and

M52XDrv.dll are required during runtime.

1.2.3. Microsoft Visual Basic

Add module DevKitConsts52X.bas to your project. Dynamic libraries
VBDevKit52X.dll and M52XDrv.dll are required during runtime.

Development kit for DATAMAN 520 series Programmer’s Guide

2. Controlling the device

This chapter contains information about the device initialization, setting device
parameters and measurement using development kit.

2.1. Driver loading
First of all, it is necessary to load the device driver using LoadDriver function.
int LoadDriver(void);
Appropriate error code is returned, if device driver loading fails.
2.2. Device initialization
After successful device driver loading, it is time to perform device initialization.
Function InitHardware initializes device.
int InitHardware(void *DeviceContextBuffer);
As a parameter, pointer to the DeviceContextBuffer structure is required. After

successful initialization, this structure will be filled with device dependent parameters
(such as memory size, available timebases etc.)

If the InitHardware returns ERROR_OK, device is ready for communication.

Now it is possible to set the device parameters with proper functions.

2.3. Data acquisition loop

Application should enter data acquisition loop after device initialization. Data
acquisition is controlled by function Data. (fig. 2.3.1. for block diagram).

Development kit for DATAMAN 520 series

Data(DataBuffer, Length,
SamplesCount, DataStatus,
TriggerStatus)

Programmer’s Guide

l

Data(DataBuffer, Length,
SamplesCount, DataStatus,
TriggerStatus)

Any processing

|

Is DataStatus = True?

Yes

No

|

Data are ready in buffer

Figure 2.3.1. — Data acquisition loop

int SamplesCount, TriggerStatus;
bool DataStatus;
unsigned short int DataBuffer[8192];

Data(DataBuffer, 8192, SamplesCount, DataStatus, TriggerStatus);

fBufferB[i] = (DataBuffer[i] >> 8) & Oxff;

while (1)
{
if (DataStatus)
{
for (inti=0; i < 8192; i++)
{
fBufferA[i] = DataBuffer[i] & Oxff;
}
UpdateWithNewData();
}
}
return O;

New data are stored in the DataBuffer each time the Data function returns with

successful data acquisition.

Development kit for DATAMAN 520 series Programmer’s Guide

2.4. Application termination

The application should call DelnitHardware function prior its termination to
deinitialize the device.

Development kit for DATAMAN 520 series

3. Reference
This chapter describes DK functions.

Initialization functions
LoadDriver
InitHardware
DelnitHardware

Trigger functions
SetTrigger
SetTriggerCount
SetTriggerLength
SetTriggerMode
SetAfterTriggerSamplesCount
SetBeforeTriggerDelay
SetPrimaryTriggerSource
SetSecondaryTriggerSource
InvertPrimaryTriggerSource
InvertSecondaryTriggerSource

Time base function
SetTimeBase

Vertical control functions
SetProbe
SetRange
SetDC
SetVert

Data acquisition functions
Data

EnableWaveformConformityDetection

SetDigitalShielding
SetShapePrediction

Other functions
CheckConnection
CompensationGenerator
GetSDKVersion
GetDeviceDriverVersion
GetUSBDriverVersion

Visual Basic functions
GetDensities
GetDevicelD
GetDeviceMemorySize
GetDevicePointsPerDivider
GetTimeBases

Programmer’s Guide

Development kit for DATAMAN 520 series Programmer’s Guide

3.1. Initialization functions

DelnitHardware
Deinitializes the device and releases the device driver library.

Declaration:
typedef _export _stdcall void (*fDelnitHardware)(void);
TDelnitHardware = procedure; stdcall;
Public Declare Sub DelnitHardware Lib "VBDevKit52X.dll" ()

Parameters:
None

Return value:
None

InitHardware

Performs the device initialization.

Declaration:
typedef _export _stdcallint (*fInitHardware) (void*DeviceContextBuffer);
TInitHardware = function (DeviceContextBuffer: Pointer): Integer; stdcall;
Public Declare Function InitHardware Lib "VBDevKit52X.dll" () As Long

Parameters:
DeviceContextBuffer — Pointer to the device context data structure. It is filled
with device dependent values after successful initialization.

Returned value:
ERROR_OK - Initialization successful
ERROR_USB_DRIVER_NOT_LOADED - USB driver loading failed
ERROR_DEVICE_CONFIGURATION_FAILED - Unable to configure FPGA
ERROR_DEVICE_CALIBRATION_BROKEN - Calibration data in device are
corrupted
ERROR_DEVICE_DRIVER_NO_ENTRY_POINT - Device driver is not
compatible with DK
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK cannot be used with
connected device (DK was not purchased)
ERROR_USB_FAILED — Unable to communicate with device
ERROR_UNKNOWN_DEVICE - Unknown device is connected

LoadDriver

Loads the device driver library.

Declaration:

-10 -

Development kit for DATAMAN 520 series Programmer’s Guide

typedef _export _stdcall int (*fLoadDriver) (void);
TLoadDriver = function : Integer; stdcall;
Public Declare Function LoadDriver Lib "VBDevKit52X.dll" () As Long

Parameters:
None

Return Value:
ERROR_OK - Device driver loading succeeded
ERROR_DRIVER_NOT_LOADED - Device driver loading failed
ERROR_DRIVER_FUNCTIONS MISSING - M52Xdrv.dll driver is not
compatible with the DK

3.2. Trigger functions

SetTrigger
Sets desired threshold voltage.

Declaration:

typedef _export _stdcall int (*fSetTrigger) (int ThresholdVoltage, int
ChannelSelector);

TSetTrigger = function (ThresholdVoltage: Integer; ChannelSelector: Integer):
Integer; stdcall;

Public Declare Function SetTrigger Lib "VBDevKit52X.dll" (ByVal
ThresholdVoltage As Long, ByVal ChannelSelector As Long) As Long

Parameters:

ThresholdVoltage — Desired threshold voltage for channel specified in
ChannelSelector. Valid values are in range <0, 255>,

ChannelSelector — Valid values are constants CHANNEL_A or CHANNEL B

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Use the actual range setting and waveform vertical shift setting on specified
channel to calculate ThresholdVoltage.

SetTriggerCount

Sets desired count of valid trigger event occurence is set. For more information see
the DATAMAN 520 oscilloscope user’s guide, chapters about triggering system.

Declaration:

-11 -

Development kit for DATAMAN 520 series Programmer’s Guide

typedef _export _stdcall int (*fSetTriggerCount) (int InputValue, int
LevelSelector);

TSetTriggerCount = function (InputValue: Integer; LevelSelector: Integer):
Integer; stdcall;

Public Declare Function SetTriggerCount Lib "VBDevKit52X.dllI" (ByVal
InputVValue As Long, ByVal LevelSelector As Long) As Long

Parameters:
InputValue — Desired count of occurence. Valid range is <0, 32767>
LevelSelector — Specifies affected trigger system level. Valid values are
TRIGGER_LEVEL_PRIMARY or TRIGGER_LEVEL_SECONDARY constants.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

SetTriggerLength

Sets desired minimal length of valid trigger event. For more information see the
DATAMAN 520 oscilloscope user’s guide, chapters about triggering system
filters.

Declaration:

typedef _export _stdcall int (*fSetTriggerLength)(int SamplesCount, int
LevelSelector);

TSetTriggerLength = function (SamplesCount: Integer; LevelSelector:
Integer): Integer; stdcall,

Public Declare Function SetTriggerLength Lib "VBDevKit52X.dll" (ByVal
SamplesCount As Long, ByVal LevelSelector As Long) As Long

Parameters:

InputValue — Desired length of valid trigger event (samples count). Valid
values are 0, 8 and multiples of 4 from range <12, 131068>.

LevelSelector — Specifies which trigger system level is affected. Valid values
are TRIGGER_LEVEL_PRIMARY or TRIGGER_LEVEL_SECONDARY
constants.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed
SetTriggerMode
Sets trigger mode.

Declaration:

-12 -

Development kit for DATAMAN 520 series Programmer’s Guide

typedef _export _stdcall int (*fSetTriggerMode) (int TriggerMode);

TSetTriggerMode = function (TriggerMode: Integer): Integer; stdcall;

Public Declare Function SetTriggerMode Lib "VBDevKit52X.dll" (ByVal
TriggerMode As Long) As Long

Parameters:

TriggerMode — Valid values are following constants:
TRIGGER_MODE_NORMAL - Data acquisition starts on occurrence
of valid trigger event after the Data function call and
TRIGGER_MODE_AUTO - If valid trigger event does not occur, data
acquisition starts immediately, otherwise on the trigger event
TRIGGER_MODE_MANUAL - Data acquisition starts immediately
after the Data function call

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Other trigger system settings are ignored, if the
TRIGGER_MODE_MANUAL mode is set.

SetAfterTriggerSamplesCount

Sets desired samples count after trigger event.

Declaration:
typedef _export _stdcall int (*fSetAfterTriggerSamplesCount)(int
InputValue);
TSetAfterTriggerSamplesCount = function (InputValue: Integer): Integer;
stdcall;
Public Declare Function SetAfterTriggerSamplesCount Lib
"VBDevKits2X.dll" (ByVal InputValue As Long) As Long

Parameters:
InputValue — Desired samples count. Valid range is <0, 63457>

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Use actual sampling frequency to calculate after trigger acquisition length.

-13 -

Development kit for DATAMAN 520 series Programmer’s Guide

SetBeforeTriggerDelay

Sets desired hold off.

Declaration:
typedef _export _stdcall int (*fSetBeforeTriggerDelay) (int SamplesCount);
TSetBeforeTriggerDelay = function (SamplesCount: Integer): Integer; stdcall;
Public Declare Function SetBeforeTriggerDelay Lib "VBDevKit52X.dll"
(ByVal SamplesCount As Long) As Long

Parameters:
SamplesCount — Desired hold off in samples. Valid range is <0, 131072>.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

SetPrimaryTriggerSource

Primary level trigger source selection. You can activate more than one source at
simultaneously.

Declaration:
typedef _export _stdcall int (*fSetPrimaryTriggerSource)(int InputMask);
TSetPrimaryTriggerSource = function (InputMask: Integer): Integer; stdcall;
Public Declare Function SetPrimaryTriggerSource Lib "VBDevKit52X.dll"
(ByVal InputMask As Long) As Long

Parameters:

InputMask — Combination of constants TRIGGER_CHANNEL_A,
TRIGGER_CHANNEL_B, TRIGGER_EXTERNAL (bitmask). If the given bit is
set the appropriate trigger source will be considered valid.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with

connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Bitmask is sum of appropriate constants.

SetSecondaryTriggerSource

Secondary level trigger source selection. You can activate more than one source at
simultaneously.

Declaration:

-14 -

Development kit for DATAMAN 520 series Programmer’s Guide

typedef _export _stdcall int (*fSetSecondaryTriggerSource)(int InputMask);

TSetSecondaryTriggerSource = function (InputMask: Integer): Integer; stdcall;

Public Declare Function SetSecondaryTriggerSource Lib "VBDevKit52X.dll"
(ByVal InputMask As Long) As Long

Parameters:

InputMask — Combination of constants TRIGGER_CHANNEL_A,
TRIGGER_CHANNEL_B, TRIGGER_EXTERNAL (bitmask). If the given bit is
set the appropriate trigger source will be considered valid.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Bitmask is sum of appropriate constants.

InvertPrimaryTriggerSource

Selects whether the rising or falling edge will be considered as a valid trigger event
on primary trigger level.

Declaration:

typedef _export _stdcall int (*finvertPrimaryTriggerSource)(int InputMask);

TlnvertPrimaryTriggerSource = function (InputMask: Integer): Integer;
stdcall;

Public Declare Function InvertPrimaryTriggerSource Lib "VBDevKit52X.dll"
(ByVal InputMask As Long) As Long

Parameters:

InputMask - Combination of constants TRIGGER_CHANNEL_A,
TRIGGER_CHANNEL_B, TRIGGER_EXTERNAL (bitmask). If the given bit is
set the appropriate trigger source will be considered valid.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Bitmask is sum of appropriate constants.

InvertSecondaryTriggerSource

Selects whether the rising or falling edge will be considered as a valid trigger event
on secondary trigger level.

- 15 -

Development kit for DATAMAN 520 series Programmer’s Guide

Declaration:

typedef _export _stdcall int (*flnvertSecondaryTriggerSource)(int
InputMask);

TlInvertSecondaryTriggerSource = function (InputMask: Integer): Integer;
stdcall;

Public Declare Function InvertSecondaryTriggerSource Lib
"VBDevKit52X.dlI" (ByVal InputMask As Long) As Long

Parameters:

InputMask - Combination of constants TRIGGER_CHANNEL_A,
TRIGGER_CHANNEL_B, TRIGGER_EXTERNAL (bitmask). If the given bit is
set the appropriate trigger source will be considered valid.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Bitmask is sum of appropriate constants.

3.3. Time base functions

SetTimeBase

Sets desired time base.

Declaration:

typedef _export _stdcall int (*fSetTimeBase) (int InputValue, int &Retval);

TSetTimeBase = function (InputValue: Integer; var Retval: Integer): Integer;
stdcall;

Public Declare Function SetTimeBase Lib "VBDevKit52X.dllI" (ByVal
InputValue As Long, ByRef RetVal As Long) As Long

Parameters:

InputValue — Desired TimeBase value in nanoseconds

Retval — Indicates, whether the measurement will be performed in sampling or
in real mode. Valid values are DEVICE TIME_MODE_SAMPLING or
DEVICE_TIME_MODE_NORMAL

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

-16 -

Development kit for DATAMAN 520 series Programmer’s Guide

Note:

You should use only timebase values obtained from the InitHardware function
via DeviceContex structure or constants from the table. It is recommended to set
valid trigger length to zero (call function SetTriggerLength (O,
TRIGGER_LEVEL_PRIMARY)) before entering sampling mode.

3.4. Vertical control functions

SetProbe

Sets desired probe attenuation 1:1, 1:10 or 1:100 on channel selected by parameter
ChannelSelector.

Declaration:

typedef _export _stdcall int (*fSetProbe)(int ProbeType, int ChannelSelector);

TSetProbe = function(ProbeType: Integer; ChannelSelector: Integer): Integer;
stdcall;

Public Declare Function SetProbe Lib "VBDevKit52X.dll" (ByVal ProbeType
As Long, ByVal ChannelSelector As Long) As Long

Parameters:

ProbeType - Valid values are constants PROBE_TYPE_1,
PROBE_TYPE_10, PROBE_TYPE_100

ChannelSelector — Valid values are constants CHANNEL_A or CHANNEL B

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

SetRange
Sets the desired range on channel specified by parameter ChannelSelector.

Declaration:

typedef _export _stdcall int (*fSetRange)(int DensityValue, int
ChannelSelector, int &Retval);

TSetRange = function (DensityValue: Integer; ChannelSelector: Integer; var
Retval: Integer): Integer; stdcall;

Public Declare Function SetRange Lib "VBDevKits52X.dll" (ByVal
DensityValue As Long, ByVal ChannelSelector As Long, ByRef RetVal As Long)
As Long

Parameters:

DensityValue — The range value in millivolts to be set on channel selected by
the ChannelSelector.

-17 -

Development kit for DATAMAN 520 series Programmer’s Guide

ChannelSelector - Valid values are constants CHANNEL_A or
CHANNEL_B.

Retval — The new vertical shift value for given channel and given range is
returned through Retval variable.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:

When changing the range, the waveform vertical position will also slightly change.
Use the Retval value in SetVert function if you want to keep the waveform vertical
position unchanged after range change.

SetDC

This function switches between AC or DC coupling on channel specified by
ChannelSelector.

Declaration:

typedef _export _stdcall int (*fSetDC) (bool InputValue, int ChannelSelector);

TSetDC = function (InputValue: Boolean; ChannelSelector: Integer): Integer;
stdcall;

Public Declare Function SetDC Lib "VBDevKit52X.dIlI" (ByVal InputValue
As Boolean, ByVal ChannelSelector As Long) As Long

Parameters:
InputValue — True for DC coupling
ChannelSelector — Valid values are constants CHANNEL_A or CHANNEL B

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

SetVert

Sets vertical shift.

Declaration:

typedef _export _stdcall int (*fSetVert) (int VerticalShiftValue, int
ChannelSelector, int &Retval);

TSetVert = function (VerticalShiftValue: Integer; ChannelSelector: Integer;
var Retval: Integer): Integer; stdcall;

Public Declare Function SetVert Lib "VBDevKit52X.dllI" (ByVal
VerticalShiftValue As Long, ByVal ChannelSelector As Long, ByRef RetVal As
Long) As Long

-18 -

Development kit for DATAMAN 520 series Programmer’s Guide

Parameters:
VerticalShiftValue — Desired value of vertical shift on channel specified by
ChannelSelector. Valid range is <0, 4095>
ChannelSelector — Valid values are constants CHANNEL_A or CHANNEL_B
Retval — The position of zero (GND) is returned via this variable.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

3.5. Data acquisition function

Data

The data acquisition process is controlled by this function.

Declaration:

_export _stdcall int (*fData) (void *DataBuffer, int BufferLength, int
&SamplesCount, bool &DataStatus, int &TriggerStatus);

TData = function (DataBuffer: Pointer; BufferLength: Integer; var
SamplesCount; var DataStatus: Boolean; var TriggerStatus: Integer): Integer;
stdcall;

Public Declare Function Data Lib "VBDevKit52X.dll" (Data As Integer,
ByVal BufferLength As Long, ByRef SamplesCount As Long, ByRef DataStatus
As Boolean, ByRef TriggerStatus As Long) As Long

Parameters:
TriggerStatus - This variable contains information on current data acquisition
status and the sampling mode status. Decode it as follows:

Byte Meaning

0 Data acquisition / trigger status

1 Sampling mode status for channel A
2 Sampling mode status for channel B

Sampling mode status value can be one of the following:
TRIGGER_SAMPLING_STATUS LESS THAN_ HALF - less than 50% of
data were measured
TRIGGER_SAMPLING_STATUS_MORE_THAN_HALF - more than 50%
but less then 100% of data were measured

TRIGGER_SAMPLING_STATUS MORE_THAN_ENOUGH - all data were
measured

Data acquisition / trigger status value can be one of the following:
TRIGGER_STATUS_READY - measurement is completed

-19 -

Development kit for DATAMAN 520 series Programmer’s Guide

TRIGGER_STATUS_NOT_READY - measurement is in progress
TRIGGER_STATUS NOT_TRIGGER - measurement started, waiting for
trigger

SamplesCount — Amount of acquired samples

DataStatus — True indicates successful data acquisition

BufferLength — DataBuffer length (samples count), must be greater or equal to

device memory size

DataBuffer — When measurement is finished, acquired data are placed in this
buffer. The size of this the buffer must be BufferLength 16 bit words. Data are
always located at the end of the buffer (location of trigger doesn’t move if same
number of after trigger samples is set). Figure 3.5.1. shows data alignment.

After trigger = 4096

Buffer: |
Buffer: |
Buffer:

SamplesCount = 4200
SamplesCount = 4600
SamplesCount = 5200

Figure 3.5.1. — Data alignment

Valid data are located from index (MemorySize — SamplesCount) to the end of the
buffer.

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

EnableWaveformConformityDetection
Activates / deactivates WCD technology.

Declaration:

typedef _export _stdcall int (*fEnableWaveformConformityDetection) (bool
EnableDetection, int DetectionSensitivity);

TEnableWaveformConformityDetection = function (EnableDetection:
Boolean; DetectionSensitivity: Integer): Integer; stdcall;

Public Declare Function EnableWaveformConformityDetection Lib

"VBDevKit52X.dlI" (ByVal EnableDetection @ As Boolean, ByVal
DetectionSensitivity As Long) As Long

Parameters:
EnableDetection — True enables the WCD, false disables it.
DetectionSensitivity — WCD sensitivity. Valid values are following constants:

-20 -

Development kit for DATAMAN 520 series Programmer’s Guide

WCD_VERY_HIGH_SENSITIVITY =8
WCD_HIGH_SENSITIVITY = 12
WCD_MEDIUM_SENSITIVITY = 16
WCD_LOW_SENSITIVITY = 20

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

SetDigitalShielding

Enables digital shielding and sets its level on channel specified by
ChannelSelector.

Declaration:
typedef _export _stdcall int (*fSetDigitalShielding) (bool
DigitalShieldingActive, int DigitalShieldingLevel, int ChannelSelector);
TSetDigitalShielding = function (DigitalShieldingActive: Boolean;

DigitalShieldingLevel: Integer;ChannelSelector: Integer): Integer; stdcall;

Public Declare Function SetDigitalShielding Lib "VBDevKit52X.dllI" (ByVal
DigitalShieldingActive As Boolean, ByVal DigitalShieldingLevel As Long, ByVal
ChannelSelector As Long) As Long

Parameters:
DigitalShieldingActive — True activates digital shielding, false deactivates it
DigitalShieldingLevel — Desired level of digital shielding <2..64>. We
recommend to set value 4 for most of measurements.
ChannelSelector — Valid values are constants CHANNEL_A or CHANNEL_B

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
The higher digital shielding level is entered, the slower oscilloscope reflects
signal change.

SetShapePrediction
Activates the shape prediction for sampling mode.

Declaration:
Typedef _export _stdcall int (*fSetShapePrediction) (bool ShapePrediction);
TSetShapePrediction = function (ShapePrediction: Boolean): Integer; stdcall;
Public Declare Function SetShapePrediction Lib "VBDevKit52X.dllI" (ByVal
ShapePrediction As Boolean) As Long

-21 -

Development kit for DATAMAN 520 series Programmer’s Guide

Parameters:
ShapePrediction —
true — shape prediction active
false — shape prediction inactive

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

Note:
Shape prediction is used in the sampling mode to predict the waveform shape from
measured samples until all data are collected.

DeviceContext

struct Densityltem {
I* Millivolts per divider */
int fDensity;
I* Value to be filled in the device density registry */
unsigned short int fDensityRegistryCombinationChannelA;
I* Value to be filled in the device reference registry for Probe type 1 */
unsigned short int fReferenceRegistryCombinationProbelChannelA;
I* Value to be filled in the device reference registry for Probe type 10 */
unsigned short int fReferenceRegistryCombinationProbe10ChannelA;
/* Value to be filled in the device reference registry for uncalibrated device */
unsigned short int fReferenceRegistryCombinationNoCalibChannelA;
I* Value to be filled in the device density registry */
unsigned short int fDensityRegistryCombinationChannelB;
I* Value to be filled in the device reference registry for Probe type 1 */
unsigned short int fReferenceRegistryCombinationProbelChannelB;
/* Value to be filled in the device reference registry for Probe type 10 */
unsigned short int fReferenceRegistryCombinationProbe10ChannelB;
/* Value to be filled in the device reference registry for uncalibrated device */
unsigned short int fReferenceRegistryCombinationNoCalibChannelB;

}

struct DeviceDensitySettings {
/* Count of used values in arrays */
int fitemsCount;

Densityltem fDensityltems[11];

}

struct TimeBaseltem {
/* Period per divider in nanoseconds */
double fTimeBase;
/* Sampling period in nanoseconds */
double fSamplingPeriod;

-22 -

Development kit for DATAMAN 520 series Programmer’s Guide

I* Flag for each item indicating if it is in sampling mode */
bool fSamplingMode;

/* Value to be filled in the device registry */

unsigned short int fRegistryCombination;

¥

struct DeviceSweepSettings {
/* Count of used values in arrays */
int fltemsCount;
I* Array of sweep values */

int fSweepValue [16];

}

struct DeviceTimeBaseSettings {
/* Count of used values in arrays */
int fltemsCount;
[* Sampling Mode level */
int fSamplingModeLevel;
I* Array of TTimeBaseltems */
TimeBaseltem fTimeBaseltems[31] ;

}3

/* Device contex structure is filled at device initialization/detection time with proper
values for given device type */

struct DeviceContext {
/* Link to sweep settings instance */
struct DeviceSweepSettings fDeviceSweepSettings;
/* Link to timebase settings instance */
struct DeviceTimeBaseSettings fDeviceTimeBaseSettings;
/* Link to density settings instance */
struct DeviceDensitySettings fDeviceDensitySettings;
/* Count of samples displayed per screen for Sweep 1:1 */
int fMeasurementView;
/* Count of samples displayed per divider for Sweep 1:1 */
int fPointsPerDivider;
/* Device memory size */
int fDeviceMemorySize;
/* Device ID */
int fDevicelD;
o

struct ScopeDriverVersion {
[* Driver Major version */
unsigned char MajorVersion;
[* Driver Minor version */
unsigned char MinorVersion;

-23 -

Development kit for DATAMAN 520 series Programmer’s Guide

3.6. Other functions

CheckConnection
Checks the communication with device.

Declaration:

typedef _export _stdcall int (*fCheckConnection)(void);

TCheckConnection = function : Integer; stdcall;

Public Declare Function CheckConnection Lib "VBDevKit52X.dll" () As
Long

Parameter:
None

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

CompensationGenerator
Activates / deactivates the compensation generator.

Declaration:
typedef _export _stdcall int (*fCompensationGenerator)(bool InputValue);
TCompensationGenerator = function (InputValue: Boolean): Integer; stdcall;
Public Declare Function CompensationGenerator Lib "VBDevKit52X.dll"
(ByVal InputValue As Boolean) As Long

Parameters:
InputValue - Boolean value
true — compensation generator active
false — compensation generator inactive

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)
ERROR_USB_COMMUNICATION_FAILED - USB communication failed

GetSDKVersion
Returns the Development kit version.
Declaration:

typedef _export _stdcall int (*fGetSDKVersion)(void *Version);
TGetSDKVersion = function (Version: Pointer):integer;stdcall;

=24 -

Development kit for DATAMAN 520 series Programmer’s Guide

Public Declare Function GetSDKVersion lib *“VBDevKit52X.dll”
(DriverVersion as TDriverVersion) As Long;

Parameters:
Version — Pointer to the DeviceDriverVersion structure

Return Value:
ERROR_OK - Function executed successfully

GetDeviceDriverVersion

Returns the device driver version.

Declaration:
typedef _export _stdcall int (*fGetDeviceDriverVersion)(void *Version);
TGetDeviceDriverVersion = function (Version: Pointer): Integer; stdcall;
Public Declare Function GetDeviceDriverVersion Lib "VBDevKit52X.dll"
(DriverVersion As TDriverVersion) As Long

Parameters:
Version - Pointer to the device driver version structure

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT_KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)

GetUSBDriverVersion

Return the USB driver (em52X) version.

Declaration:
typedef _export _stdcall int (*fGetUSBDriverVersion)(void *Version);
TGetUSBDriverVersion = function (Version: Pointer): Integer; stdcall;
Public Declare Function GetUSBDriverVersion Lib "VBDevKit52X.dll"
(DriverVersion As TDriverVersion) As Long

Parameters:
Version - Pointer to the device driver version structure

Return Value:
ERROR_OK - Function call successfuly completed
ERROR_DEVELOPMENT _KIT_NOT_ENABLED - DK can not be used with
connected device (DK was not purchased)

-25 -

Development kit for DATAMAN 520 series Programmer’s Guide

3.7. Visual Basic functions

Since DeviceContext structure mapping and members accessing would be
problematic in Visual Basic following functions provide interface for those data
access. Structure is accessible after successful InitHardware call.

GetDensities
Returns supported voltage ranges.

Declaration:
Public Declare Function GetDensities Lib "VBDevKit52X.dll" (DensitiesField
As Long) As Long

Parameters:
DensitiesField — Voltage ranges supported by device will be filled into this
field.

Return Value:
None
Example:
Dim DensityField(12) As Long
RetVal = GetDensities(DensityField(0))

GetDevicelD

Returns ID of the connected device. This value identifies device model. Use the
DevicelDConstsArray constants or following table to identify the device.

ID Device model

1 DATAMAN 522
3 DATAMAN 524
5 DATAMAN 526

Declaration:
Public Declare Function GetDevicelD Lib "VBDevKit52X.dll" () As Long

Parameters:
None

Return Value:
DevicelD value, which can be converted to device type name.

GetDeviceMemorySize

Returns connected device memory size.

- 26 -

Development kit for DATAMAN 520 series Programmer’s Guide
Declaration:
Public Declare Function GetDeviceMemorySize Lib "VBDevKit52X.dll" ()
As Long

Parameters:
None

Return Value:
Memory size in samples count is returned.

GetDevicePointsPerDivider

Supported devices have different time bases. Due to various timebases, there is
different points per divider ratio. Use returned value to display data properly.

Declaration:
Public Declare Function GetDevicePointsPerDivider Lib "VBDevKit52X.dII"
() As Long

Parameters:
None

Return Value:
Points per divider ratio

GetTimeBases
Returns supported time base values.
Declaration:
Public Declare Function GetTimeBases Lib "VBDevKit52X.dll"
(TimeBaseField As Long) As Long
Parameters:
TimeBaseField — Field where valid time base values will be filled after device
initialization.

Return Value:
None

Example:
Dim TimeBaseField(32) As Long
RetVal = GetTimeBases(TimeBaseField(0))

3.8. Constants used in the DK

Channel descriptors
CHANNEL_A 100

-27-

Development kit for DATAMAN 520 series Programmer’s Guide

CHANNEL_B 200
CHANNEL_C 300
CHANNEL_D 400
Data acquistion control constants
CODE_RESET_MEASURING 40
CODE_START_MEASURING 41
CODE_STOP_MEASURING 42
Device driver return values
DEVICE_FUNCTION_SUCCEEDED 1
DEVICE_TIME_MODE_NORMAL 2
DEVICE_TIME_MODE_SAMPLING 3
Trigger system status indicators
TRIGGER_STATUS_READY 1
TRIGGER_STATUS_NOT_READY 2

TRIGGER_STATUS_NOT_TRIGGER 3

Sampling mode data acquistion status indicators
TRIGGER_SAMPLING_STATUS LESS THAN HALF
TRIGGER_SAMPLING_STATUS_MORE_THAN_HALF
TRIGGER_SAMPLING_STATUS_MORE_THAN_ENOUGH 3

N -

Trigger system level selectors
TRIGGER_LEVEL_PRIMARY 1
TRIGGER_LEVEL_SECONDARY 2

Trigger source selectors

TRIGGER_CHANNEL_A 1
TRIGGER_CHANNEL_B 2
TRIGGER_EXTERNAL 4

Trigger mode selectors

TRIGGER_MODE_AUTO 1
TRIGGER_MODE_NORMAL 2
TRIGGER_MODE_MANUAL 4

Probe attenuation selectors
PROBE_TYPE_ 1 1
PROBE_TYPE_10 2
PROBE_TYPE_100 3

DK interface error codes

ERROR_OK 1000
ERROR_USB_FAILED 1001
ERROR_USB_DRIVER_NOT_LOADED 1002

ERROR_DEVICE_CONFIGURATION_FAILED 1003
ERROR_DEVICE_CALIBRATION_BROKEN 1004
ERROR_DEVICE_DRIVER_NO_ENTRY_POINT 1005

- 28 -

Development kit for DATAMAN 520 series

ERROR_DEVICE_DRIVER_NOT_LOADED 1006
ERROR_USB_COMMUNICATION_FAILED 1007
ERROR_DEVELOPMENT _KIT _NOT_ENABLED 1008

ERROR_DRIVER_NOT_LOADED 1009
ERROR_DRIVER_FUNCTIONS_MISSING 1010
ERROR_UNKNOWN_DEVICE 1011

WCD sensitivity constants
WCD_VERY_HIGH_SENSITIVITY 8

WCD_HIGH_SENSITIVITY 12
WCD_MEDIUM_SENSITIVITY 16
WCD_LOW_SENSITIVITY 20

Timebases Table

Programmer’s Guide

DATAMAN 522 DATAMAN 524 DATAMAN 526
Timebase| S.p. |Timebase| S.p.. |TimeBase| S.p.
2ns 12.5ns
5ns 20 ns 5ns 12.5ns
10 ns 20 ns 10 ns 20 ns 10 ns 12.5ns
20 ns 20 ns 20 ns 20 ns 20 ns 12.5ns
50 ns 20 ns 50 ns 20 ns 50 ns 12.5ns
100 ns 20 ns 100 ns 20 ns 100ns | 12.5ns
200 ns 20 ns 200 ns 20 ns 200 ns 5ns
500 ns 20 ns 500 ns 10 ns 500ns | 12.5ns
1us 20 ns 1us 20 ns 1us 25ns
2 uUs 40 ns 2 us 40 ns 2 uUs 50 ns
5us 100 ns 5 us 100 ns 5us 125 ns
10 us 200 ns 10 us 200 ns 10 us 250 ns
20 us 400 ns 20 us 400 ns 20 us 500 ns
50 us 1us 50 us 1us 50us |1.250 us
100 us 2 us 100 us 2 us 100 us 2.5 us
200 us 5us 200 us 5us 200 us 5us
500 us 10 us 500 us 10 us 500us | 12.5us
1ms 20 us 1ms 20 us 1ms 25 us
2 ms 40 us 2 ms 40 us 2 ms 50 us
5ms 100 us 5ms 100 us 5ms 125 us
10 ms 200 us 10 ms 200 us 10 ms 250 us
20 ms 400 us 20 ms 400 us 20 ms 500 us

-29 -

Development kit for DATAMAN 520 series

50 ms

1ms

50 ms

1ms

50 ms

1.25 ms

100 ms

2ms

100 ms

2ms

100 ms

2.5 ms

Programmer’s Guide

-30-

	1. Basic information
	1.1. Development kit contents
	1.2. Development kit usage
	1.2.1. Borland C++ and Borland C++ Builder
	1.2.2. Inprise Delphi
	1.2.3. Microsoft Visual Basic

	2. Controlling the device
	2.1. Driver loading
	2.2. Device initialization
	2.3. Data acquisition loop
	2.4. Application termination

	3. Reference
	3.1. Initialization functions
	3.2. Trigger functions
	3.3. Time base functions
	3.4. Vertical control functions
	3.5. Data acquisition function
	DeviceContext
	3.6. Other functions
	3.7. Visual Basic functions
	3.8. Constants used in the DK

