
NAND Flash Memories Application Note

NAND Flash Memories

–

Using Multiply Partition (with Skip IB)

on Dataman Universal Device Programmers

–

(Quick Guide)

Application Note

April 2012
an_Dataman_nand_partitions, version 1.08

Version 1.08/04.2012 Page 1 of 16

NAND Flash Memories Application Note

Increasing demands on embedded devices involve also increased complexity of programming tasks.

Embedded memory of today does not store just simple piece of firmware. It carries various types of data used by

modern operating system driven appliances. Typically, there are some kind of boot-loader, operating system

executables and user data stored in single-chip memory unit. Within NAND flash memory devices, management of

these mixed-type data is considerably impacted by invalid blocks presence. Correct partitioning of NAND flash

memory therefore becomes crucial element of many embedded devices designs.

Dataman programmers are able to cope with NAND flash partitioning tasks. This application note is aimed

to help you to understand how to use their features to fulfil your needs.

NAND flash partitioning is supported on the Dataman 48Pro2, Dataman 448Pro2 and Dataman

848Pro2 programmers.

If you recognize the apparatus described in this application note not suitable for your demand, you can

consider also using our Multi-Project feature.

Version 1.08/04.2012 Page 2 of 16

NAND Flash Memories Application Note

OVERVIEW

Version 1.08/04.2012 Page 3 of 16

Figure 1. Access Method dialog window (<Alt+S>) with Multiply Partition set

NAND Flash Memories Application Note

To enable Multi-Partition feature, open Access Method dialog window (easy accessible through clicking

the link in Device panel in bottom right of pg4uw software window, or shortcut <Alt+S>) and set Invalid Block
Management option to Multiply Partition (with Skip IB).

ACCESS METHOD OPTIONS VALIDITY

“With Skip IB” means that invalid blocks are skipped and next valid blocks are used instead. This is the

only invalid blocks management method available in partition and is used automatically.

Setting of Spare Area Usage option is ignored. Spare area is always used and input data file(s) must

contain correct data for spare area. Spare area is programmed using method corresponding to User Data setting. If

your input data file doesn't contain spare area data (e.g. your system doesn't use spare area), you are still required

to add empty (blank) spare area data. You can do it on your own, or you can use Add blank spare area feature

available in Load file dialog window.

Setting of Required Good Blocks Area is accepted and is applied globally (i. e. over whole device, not

over individual partitions).

Setting of Max. Allowed Number of Invalid Blocks in Device is accepted and is applied globally.

Setting of Quick Program option is accepted and is applied globally.

Reserved Block Area Options are irrelevant when skipping invalid blocks and respective setting is not

taken into account.

Setting of Invalid Block Indication Options is accepted and is applied globally.

Setting of Tolerant Verification Options is accepted and is applied globally.

Version 1.08/04.2012 Page 4 of 16

NAND Flash Memories Application Note

OPERATIONS EXECUTION

Blank check

The device is always blank checked entirely, from the first up to the last address location, including spare

area.

If Blank check before programming is enabled (and is not skipped due to enabling both, Blank check

and Erase before programming), it will be performed in the same way, not taking partitioning into account.

Read

Read operation is performed on per partition basis, i. e. individual partitions are processed step by step,

from the first partition up to the last one.

Note: Partition unused (padding) area is not read. Buffer data at corresponding locations are not altered.

Verify

Verify operation is performed on per partition basis, i. e. individual partitions are processed step by step,

from the first partition up to the last one.

If Verify after reading or Verify after programming is used, the partition will be read or programmed

firstly, and after then it will be verified, see Figure 2.

Note: Partition unused (padding) area is not verified. Buffer data at corresponding locations are ignored.

Program

Program operation is performed on per partition basis, i. e. individual partitions are processed step by

step, from the first partition up to the last one. See Figure 2 for programming round example.

Note: Partition unused (padding) area is not programmed. Buffer data at corresponding locations are

ignored.

Version 1.08/04.2012 Page 5 of 16

NAND Flash Memories Application Note

Erase

The device is always erased entirely, from the first up to the last block

If Erase before programming is enabled, it will be performed in the same way, not taking partitioning into

account.

Version 1.08/04.2012 Page 6 of 16

Figure 2. Program operation round example

NAND Flash Memories Application Note

GENERAL PROCEDURE DESCRIPTION

Setting-up the Multi-Partition mode consists of three basic steps:

Selection of Multiply Partition

Open Access Method dialog window and set Invalid Block Management option to Multiply Partition
(with Skip IB), see Figure 1.

Set other options, if necessary.

After clicking OK, internal software environment will be prepared for Multi-Partition mode. Also, special

buffer for Partition Table will be created, see Figure 3. The buffer is not editable, the only way how to define

partition table is loading relevant definition file.

After Multiply Partition method is deselected, internal software environment is switched back to standard

mode and special buffer is destroyed. In consequence, partition table data are lost and must be load again after re-

enabling Multi-Partition mode again.

Version 1.08/04.2012 Page 7 of 16

Figure 3. Partition Table buffer example

NAND Flash Memories Application Note

Loading partition table definition file

After enabling Multi-Partition mode, the partition table must be defined. There is only one way how to

define the partition table - using menu File >> Load Partition table..., see Figure 4, Figure 5 and Figure 6.

However, there are several partition definition file formats supported, see later chapters for more details.

Version 1.08/04.2012 Page 8 of 16

Figure 4. Load Partition table
menu

Figure 5. Load Partition table dialog

NAND Flash Memories Application Note

Loading data image file

If relevant chapter intended to individual partition definition file formats doesn't specify otherwise, data

image file should correspond with a copy of NAND flash device without any invalid blocks. It must contain data for

all partitions placed at correct locations. Also, it must contain spare area data (or you can add spare area data

automatically on file load using Add blank spare area feature).

To load input data image file, use standard Load command (menu File >> Load, shortcut <F3> or Load
command from Main toolbar).

Version 1.08/04.2012 Page 9 of 16

Figure 6. Partition table definition file load example

NAND Flash Memories Application Note

If you haven't a single input data image file but you have several input data files for individual partitions

instead, you will need to use Positive offset setting in File load dialog. You can compute the offset using the

following formula:

positive_offset = partition_start_block_number x number_of_pages_in_block x page_size_including_spare

In this way, you can load multiple files into buffer, each one at respective offset corresponding to partition start block

address offset.

Example: Partition should start from block 30, devices has 64 pages in block and one page contains 2048 bytes of

data area and 64 bytes of spare area.

positive_offset = 30 x 64 x (2048+64) = 4055040dec = 3DE000h

Version 1.08/04.2012 Page 10 of 16

Figure 7: Load file dialog window

NAND Flash Memories Application Note

USING QUALCOMM MULTIPLY PARTITION FORMAT (*.MBN)

Generally, there are two versions of Qualcomm Multiply Partition format used. They can be simply

distinguished by the number of programming files:

Procedure for two input files (Qualcomm 80-VE594-1 B)

If you have two input files available, they are generally named FactoryImage.bin and PartitionTable.mbn.

PartitionTable.mbn is rather small (256 bytes) and contains partition table definition. Load this file using

menu File >> Load Partition table..., see chapter Loading partition table definition file.

FactoryImage.bin may be rather huge and contains binary data image. Load this file using standard Load

procedure, see chapter Loading data image file.

It is possible to save your data using this format. To save buffer content in binary format, use standard

Save procedure (menu File >> Save, shortcut <F2> or Save command from Main toolbar). To save partition table

in Qualcomm Multiply Partition compatible form, use menu File >> Save Partition table..., see Figure 4.

Procedure for single input file (Qualcomm 80-VF498-1 A)

If you have single input file available, it is generally named FactoryImage2.mbn. The file is rather huge

and contains both, partition table definition and binary data image, plus header. The file can be simply identified

using hex-viewer: you must identify text “Image file with header” at file start.

The header specifies also block validity indication byte position. This parameter is also accepted and

used for proper reading and/or verifying the device. The value overwrites manual setting in Invalid Block
Indication Options section of Access Method dialog.1

Load this file using standard Load procedure, see chapter Loading data image file.

It is not possible to save your data using this form.

Note: Qualcomm Multiply Partition format was invented by Qualcomm Incorporated (U.S.A.), not by

Dataman. The owner of all potential legal rights is Qualcomm Incorporated. Please, contact Qualcomm CDMA

Technologies (http://www.qctconnect.com/) for technical specification.

1 The support released in pg4uw version 2.66.

Version 1.08/04.2012 Page 11 of 16

http://www.qctconnect.com/

NAND Flash Memories Application Note

USING COMMA SEPARATED VALUES FORMAT (*.CSV)

This mode uses two input files. You can simply prepare both of them on your own:

Partition table definition file

Partition table definition file uses widely used comma separated values file format.

The file should contain the number of rows corresponding to the number of partitions. Each row specifies

one partition.

Values in row should be separated by separator - comma (,) or semicolon (;) can be used. Space

characters (ASCII code 0x20) are ignored and should not be used in place of values separator.

Each row should contain several values (both, decimal and/or hexadecimal values can be used):

– partition start (mandatory) - specifies the block in device, where partition should start. Enter the

block number here.

– partition end (mandatory) - specifies the block in device, where partition should end. Enter the block

number here.

– used partition size (mandatory) - specifies the number of blocks really occupied by partition data.

Typically, there are some reserve blocks added for invalid blocks replacement, therefore partition end

- partition start > used partition size. Enter number of blocks here.

– special options/reserved (optional/mandatory) - this value enables to specify some special options.

If you use it just due to comment option, enter the value of 0xFFFFFFFF (4 bytes size) here to

ensure future compatibility.

Special options format specification:

MSB(bit 31) LSB(bit 0)

xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx

bits 11:0 - Maximum allowed number of invalid blocks in partition:

0xFFF = option disabled

any other value specifies the number of invalid blocks that can be accepted in partition

bits 15:12 - Invalid blocks management method:

0x0 = Treat All Blocks

0x1 or 0xFF = Skip IB (default)

0x2 = Skip IB with Excess Abandon

0x3 = Check IB without Access

Note: Check IB with Skip IB can be specified using Skip IB (0x1 or 0xF) method and

non 0xFFF value for Max. allowed number of invalid blocks in partition.

bits 22:16 - reserved for future use, consider 0xFF value for future compatibility

Version 1.08/04.2012 Page 12 of 16

NAND Flash Memories Application Note

bit 24 - First block in partition must be good:

0b = if first block in any partition is invalid, device is considered bad and operation is aborted

1b = feature disabled

bits 31:24 - File system preparation:

0xFF = option not used

0x00 = JFFS2 Clean Markers using MSB byte ordering (big endian)

0x01 = JFFS2 Clean Markers using LSB byte ordering (little endian)

Using values not specified here will cause partition table load error.

– comment (optional) - you can enter any text here. Primarily, this item is intended for your notes that

will help you to orientate in the file. It may contain e. g. partition name. If you use comments,

reserved item must be also used.

Partition table definition file listening example:

Load this partition table definition file using menu File >> Load Partition table..., see chapter Loading

partition table definition file.

It is possible to save your partition table definition using this format. To save the partition table data, use

menu File >> Save Partition table..., see Figure 4. The table is saved using all items in raw. A partition number is

used for comment.

Saved partition table definition file listening, using the above example:

Version 1.08/04.2012 Page 13 of 16

0;100;20;0xffffffff;boot
101;200;50;0xffffffff;exec
201;300;0;0xffffffff;res1
301;400;50;0xffffffff;fsys
401;500;0;0xffffffff;res2
501;1000;50;0xffffffff;data

0;100;20;0xFFFFFFFF;Partition 0
101;200;50;0xFFFFFFFF;Partition 1
201;300;0;0xFFFFFFFF;Partition 2
301;400;50;0xFFFFFFFF;Partition 3
401;500;0;0xFFFFFFFF;Partition 4
501;1000;50;0xFFFFFFFF;Partition 5

NAND Flash Memories Application Note

Data image file

Input data image file should be a binary file (recommended) that meets all requirements specified in

chapter Loading data image file. Use standard Load procedure to load this file (see chapter Loading data image

file).

USING GROUP DEFINE FILE FORMAT (*.DEF)

Important note!

The support of this format is implemented based only on fragment of specification available from

customer. Therefore it cannot be considered full and reliable. We do not recommend to use it, until you exactly

know what you do. If you observe any problems, please, contact our technical support with full Group Define file

format specification.

Partition table definition file

This file consists of file header and group records. Each group record specifies one partition.

Load this partition table definition file using menu File >> Load Partition table..., see chapter Loading

partition table definition file.

It is possible to save your partition table definition using this format. To save the partition table data, use

menu File >> Save Partition table..., see Figure 4.

Data image file

Input data image file should be a binary file (recommended) that meets all requirements specified in

chapter Loading data image file. Use standard Load procedure to load this file (see chapter Loading data image

file).

Version 1.08/04.2012 Page 14 of 16

NAND Flash Memories Application Note

ERROR CODES

During input file(s) loading, several errors can occur. Errors are always displayed in pg4uw log-window.

Error message consists of error code and error description in the following form:

File loading problem!

Error code: #xxyy - error description

where xx stands for file format:

00 - binary file

01 - *.mbn file containing just partition table

02 - *.mbn file containing both, partition table as well as partitions data

03 - *.csv file containing partition table

04 - reserved for future use

05 - *.def file containing partition table

and yy stands for error type:

10 - disk i/o error (disk i/o error, file access error, ...)

11 - maximum buffer limit exceeded (file size grater than max. supported buffer size

12 - unable to re-allocate buffer (file size is grater than buffer size and there is some problem when

reallocating the buffer (e. g. not enough disk space))

13 - unknown separator (for *.csv files, nor comma (,) nor semicolon (;) were detected as separator)

14 - file does not specify any partition (none partition definition read)

15 - too many partitions specified in file (max. 16 partitions are supported for Qualcomm Multiply Partition,

max. 64 partitions generally)

16 - incorrect numeric values format (typo in text-oriented files (*.csv), e. g. @34 instead of 234)

17 - version not supported (not supported version of algorithm specification detected)

18 - invalid file header (damaged header, some mandatory item missing, ...)

Version 1.08/04.2012 Page 15 of 16

NAND Flash Memories Application Note

HISTORY

Version 1.00 - December 2009

– initial release

Version 1.01 - January 2010

– block validity indication byte position acceptance for Qualcomm Multiply Partition added

– Error codes section added

Version 1.02 - February 2010

– Add blank spare area feature incorporated

Version 1.03 - June 2010

– Special options added for CSV partition definition file (max. allowed number of invalid blocks in

partition, invalid blocks management method, file system preparation)

Version 1.04 - August 2010

– Qualcomm Multiply Partition format specification refined

Version 1.05 - September 2010

– added passage on loading multiple input data files

Version 1.06 - February 2011

– some minor changes in values alignment for CSV format description

Version 1.07 - May 2011

– Group Define file format added

Version 1.08 - April 2012

– “First block in partition must be good” feature added for *.CSV partition definition file format

Version 1.08/04.2012 Page 16 of 16

	Overview
	Access Method Options validity
	Operations execution
	Blank check
	Read
	Verify
	Program
	Erase

	General procedure description
	Selection of Multiply Partition
	Loading partition table definition file
	Loading data image file

	Using Qualcomm Multiply Partition format (*.mbn)
	Procedure for two input files (Qualcomm 80-VE594-1 B)
	Procedure for single input file (Qualcomm 80-VF498-1 A)

	Using Comma Separated Values Format (*.csv)
	Partition table definition file
	Data image file

	Using Group Define file format (*.def)
	Important note!
	Partition table definition file
	Data image file

	Error codes
	History

