DATA SHEET

S524A Series (I²C-Bus) Serial EEPROM
Revision 1
S524A Series (I²C-Bus)

Serial EEPROM

DATA SHEET

Revision 1
Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

S524A Series (I2C Bus) Serial EEPROM
Data Sheet, Revision 1
Publication Number: 11-S5-24A Series-072001

© 2001 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Lee, Kiheung-Eup
Yongin-City, Kyunggi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (82)-(31)-209-6530
FAX: (82)-(31)-209-6547
Home-Page URL: Http://www.samsungsemi.com

Printed in the Republic of Korea
Serial EEPROM Selection Guide

S524A40X10/40X20/40X40
S524A40X11/40X21/40X41/60X81/60X51
S524AB0X91/B0XB1
S524AD0XD1/D0XF1
S524AE0XH1

Packaging Information
Application Note
Marking Information
Ordering Information
SERIAL EEPROM SELECTION GUIDE

<table>
<thead>
<tr>
<th>Product</th>
<th>Density (Organization)</th>
<th>Page Buffer</th>
<th>Write Time (Max)</th>
<th>Write Protect</th>
<th>Endurance</th>
<th>Operating Voltage</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>S524A40X11</td>
<td>1K-bit (128 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A40X10</td>
<td>1K-bit (128 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W, S/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A40X21</td>
<td>2K-bit (256 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A40X20</td>
<td>2K-bit (256 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W, S/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A40X41</td>
<td>4K-bit (512 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A40X40</td>
<td>4K-bit (512 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W, S/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A60X81</td>
<td>8K-bit (1024 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524A60X51</td>
<td>16K-bit (2048 x 8)</td>
<td>16 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524AB0X91</td>
<td>32K-bit (4096 x 8)</td>
<td>32 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524AB0XB1</td>
<td>64K-bit (8192 x 8)</td>
<td>32 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>1M</td>
<td>1.8V–5.5V</td>
<td>8DIP/SOP/TSSOP</td>
</tr>
<tr>
<td>S524AD0XD1</td>
<td>128K-bit (16384 x 8)</td>
<td>64 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>500K</td>
<td>1.8V–5.5V</td>
<td>8DIP/TSSOP</td>
</tr>
<tr>
<td>S524AD0XF1</td>
<td>256K-bit (32768 x 8)</td>
<td>64 bytes</td>
<td>5 ms</td>
<td>H/W</td>
<td>500K</td>
<td>1.8V–5.5V</td>
<td>8DIP/TSSOP</td>
</tr>
</tbody>
</table>
NOTES
OVERVIEW

The S524A40X10/40X20/40X40 serial EEPROM has a 1,024/2,048/4,096-bit (128/256/512-byte) capacity, supporting the standard I²C™-bus serial interface. It is fabricated using Samsung’s most advanced CMOS technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). Important features are a hardware-based write protection circuit for the entire memory area and software-based write protection logic for the lower 128 bytes. Hardware-based write protection is controlled by the state of the write-protect (WP) pin. The software-based method is one-time programmable and permanent. Using one-page write mode, you can load up to 16 bytes of data into the EEPROM in a single write operation. Another significant feature of the S524A40X10/40X20/40X40 is its support for fast mode and standard mode.

FEATURES

I²C-Bus Interface
- Two-wire serial interface
- Automatic word address increment

EEPROM
- 1K/2K/4K-bit (128/256/512-byte) storage area
- 16-byte page buffer
- Hardware-based write protection for the entire EEPROM (using the WP pin)
- Software-based write protection for the lower 128-byte EEPROM
- EEPROM programming voltage generated on chip
- 1,000,000 erase/write cycles
- 100 years data retention

Operating Characteristics
- Operating voltage
 - 1.8 V to 5.5 V
- Operating current
 - Maximum write current: < 3 mA at 5.5 V
 - Maximum read current: < 200 μA at 5.5 V
 - Maximum stand-by current: < 5 μA at 5.5 V
- Operating temperature range
 - –25°C to +70°C (commercial)
 - –40°C to +85°C (industrial)
- Operating clock frequencies
 - 100 kHz at standard mode
 - 400 kHz at fast mode
- Electrostatic discharge (ESD)
 - 5,000 V (HBM)
 - 500 V (MM)

Packages
- 8-pin DIP, SOP, and TSSOP
Figure 2-1. S524A40X10/40X20/40X40 Block Diagram
NOTE: The S524A40X10/40X20/40X40 is available in 8-pin DIP, SOP, and TSSOP package.

Figure 2-2. Pin Assignment Diagram

Table 2-1. S524A40X10/40X20/40X40 Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Circuit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0, A1, A2</td>
<td>Input</td>
<td>Input pins for device address selection. To configure a device address, these pins should be connected to the VCC or VSS of the device. These pins are internally pulled down to VSS.</td>
<td>1</td>
</tr>
<tr>
<td>VSS</td>
<td>–</td>
<td>Ground pin.</td>
<td>–</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>Bi-directional data pin for the I²C-bus serial data interface. Schmitt trigger input and open-drain output. An external pull-up resistor must be connected to VCC. Typical values for this pull-up resistor are 4.7 kΩ (100 kHz) and 1 kΩ (400 kHz).</td>
<td>3</td>
</tr>
<tr>
<td>SCL</td>
<td>Input</td>
<td>Schmitt trigger input pin for serial clock input.</td>
<td>2</td>
</tr>
<tr>
<td>WP</td>
<td>Input</td>
<td>Input pin for hardware write protection control. If you tie this pin to VCC, the write function is disabled to protect previously written data in the entire memory; if you tie it to VSS, the write function is enabled. This pin is internally pulled down to VSS.</td>
<td>1</td>
</tr>
<tr>
<td>VCC</td>
<td>–</td>
<td>Single power supply.</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: See the following page for diagrams of pin circuit types 1, 2, and 3.
Figure 2-3. Pin Circuit Type 1

Figure 2-4. Pin Circuit Type 2

Figure 2-5. Pin Circuit Type 3
FUNCTION DESCRIPTION

I2C-BUS INTERFACE

The S524A40X10/40X20/40X40 supports the I2C-bus serial interface data transmission protocol. The two-wire bus consists of a serial data line (SDA) and a serial clock line (SCL). The SDA and the SCL lines must be connected to VCC by a pull-up resistor that is located somewhere on the bus.

Any device that puts data onto the bus is defined as the “transmitter” and any device that gets data from the bus is the “receiver.” The bus is controlled by a master device which generates the serial clock and start/stop conditions, controlling bus access. Using the A0, A1, and A2 input pins, up to eight S524A40X10/40X20 (four for S524A40X40) devices can be connected to the same I2C-bus as slaves (see Figure 2-6). Both the master and slaves can operate as transmitter or receiver, but the master device determines which bus operating mode would be active.

NOTE: The A0 does not affect the device address of the S524A40X40.

Figure 2-6. Typical Configuration (16 Kbits of Memory on the I2C-Bus)
I²C-BUS PROTOCOLS

Here are several rules for I²C-bus transfers:

— A new data transfer can be initiated only when the bus is currently not busy.
— MSB is always transferred first in transmitting data.
— During a data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is High.

The I²C-bus interface supports the following communication protocols:

- **Bus not busy**: The SDA and the SCL lines remain High level when the bus is not active.
- **Start condition**: Start condition is initiated by a High-to-Low transition of the SDA line while SCL remains High level. All bus commands must be preceded by a start condition.
- **Stop condition**: A stop condition is initiated by a Low-to-High transition of the SDA line while SCL remains High level. All bus operations must be completed by a stop condition (see Figure 2-7).

![Figure 2-7. Data Transmission Sequence](image)

- **Data valid**: Following a start condition, the data becomes valid if the data line remains stable for the duration of the High period of SCL. New data must be put onto the bus while SCL is Low. Bus timing is one clock pulse per data bit. The number of data bytes to be transferred is determined by the master device. The total number of bytes that can be transferred in one operation is theoretically unlimited.
- **ACK (Acknowledge)**: An ACK signal indicates that a data transfer is completed successfully. The transmitter (the master or the slave) releases the bus after transmitting eight bits. During the 9th clock, which the master generates, the receiver pulls the SDA line low to acknowledge that it successfully received the eight bits of data (see Figure 2-8). But the slave does not send an ACK if an internal write cycle is still in progress.

In data read operations, the slave releases the SDA line after transmitting 8 bits of data and then monitors the line for an ACK signal during the 9th clock period. If an ACK is detected, the slave will continue to transmit data. If an ACK is not detected, the slave terminates data transmission and waits for a stop condition to be issued by the master before returning to its stand-by mode.
• **Slave Address:** After the master initiates a Start condition, it must output the address of the device to be accessed. The most significant four bits of the slave address are called the "device identifier". The identifier for the S524A40X10/40X20/40X40 is “1010B”. The next three bits comprise the address of a specific device. The device address is defined by the state of the A0, A1 and A2 pins. Using this addressing scheme, you can cascade up to eight S524A40X10/40X20 or four S524A40X40 on the bus (see Table 2-2 below). The b1 for S524A40X40 is used by the master to select which of the blocks of internal memory (1 block = 256 words) are to be accessed. The bit is in effect the most significant bit of the word address.

• **Read/Write:** The final (eighth) bit of the slave address defines the type of operation to be performed. If the R/W bit is “1”, a read operation is executed. If it is “0”, a write operation is executed.

Table 2-2. Slave Device Addressing

<table>
<thead>
<tr>
<th>Function</th>
<th>Device Identifier</th>
<th>Device Address</th>
<th>R/W Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
</tr>
<tr>
<td>Read</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Write</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Write-protect</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: The b1 for S524A40X40 corresponds to the MSB of the memory array address word.
BYTE WRITE OPERATION

In a complete byte write operation, the master transmits the slave address, word address, and one data byte to the S524A40X10/40X20/40X40 slave device (see Figure 2-9).

![Figure 2-9. Byte Write Operation](image)

Following the Start condition, the master sends the device identifier (4 bits), the device address (3 bits), and an R/W bit set to “0” onto the bus. Then the addressed S524A40X10/40X20/40X40 generates an ACK and waits for the next byte. The next byte to be transmitted by the master is the word address. This 8-bit address is written into the word address pointer of the S524A40X10/40X20/40X40.

When the S524A40X10/40X20/40X40 receives the word address, it responds by issuing an ACK and then waits for the next 8-bit data. When it receives the data byte, the S524A40X10/40X20/40X40 again responds with an ACK. The master terminates the transfer by generating a Stop condition, at which time the S524A40X10/40X20/40X40 begins the internal write cycle.

While the internal write cycle is in progress, all S524A40X10/40X20/40X40 inputs are disabled and the S524A40X10/40X20/40X40 does not respond to additional requests from the master.
PAGE WRITE OPERATION

The S524A40X10/40X20/40X40 can also perform 16-byte page write operation. A page write operation is initiated in the same way as a byte write operation. However, instead of finishing the write operation after the first data byte is transferred, the master can transmit up to 15 additional bytes. The S524A40X10/40X20/40X40 responds with an ACK each time it receives a complete byte of data (see Figure 2-10).

![Figure 2-10. Page Write Operation](image)

The S524A40X10/40X20/40X40 automatically increments the word address pointer each time it receives a complete data byte. When one byte has been received, the internal word address pointer increments to the next address and the next data byte can be received.

If the master transmits more than 16 bytes before it generates a stop condition to end the page write operation, the S524A40X10/40X20/40X40 word address pointer value "rolls over" and the previously received data is overwritten. If the master transmits less than 16 bytes and generates a stop condition, the S524A40X10/40X20/40X40 writes the received data to the corresponding EEPROM address.

During a page write operation, all inputs are disabled and there is no response to additional requests from the master until the internal write cycle is completed.
POLLOING FOR AN ACK SIGNAL

When the master issues a stop condition to initiate a write cycle, the S524A40X10/40X20/40X40 starts an internal write cycle. The master can then immediately begin polling for an ACK from the slave device.

To poll for an ACK signal in a write operation, the master issues a start condition followed by the slave address. As long as the S524A40X10/40X20/40X40 remains busy with the write operation, no ACK is returned. When the S524A40X10/40X20/40X40 completes the write operation, it returns an ACK and the master can then proceed with the next read or write operation (see Figure 2-11).

![Flowchart of Master Polling for an ACK Signal from a Slave Device](image)
SOFTWARE-BASED WRITE PROTECTION

You can write-protect the lower 128 bytes of the EEPROM, locations 00H–7FH, in one operation. To do this, you simply write a value to a one-time, write-only register. Once you have applied this write protection, any write attempt to access the lower 128-byte area is ignored. In other words, the write protection is permanent. The effect of such a failed attempt is processed in the same way as an invalid I²C-bus protocol.

To enable write protection, you must execute a write operation to the write protection register. To access the write protection register, you use the device address “0110”. The word address and data in this write operation can be any value and the timing and waveform characteristics are identical to a normal byte write operation (see Figure 2-12).

HARDWARE-BASED WRITE PROTECTION

You can also write-protect the entire memory area of the S524A40X10/40X20/40X40. This method of write protection is controlled by the state of the Write Protect (WP) pin.

When the WP pin is connected to VCC, any attempt to write a value to the memory is ignored. The S524A40X10/40X20/40X40 will acknowledge slave and word address, but it will not generate an acknowledge after receiving the first byte of the data. Thus the write cycle will not be started when the stop condition is generated. By connecting the WP pin to VSS, the write function is allowed for the entire memory.

These write protection features effectively change the EEPROM to a ROM in order to prevent data from being overwritten. Whenever the write function is disabled, a slave address and a word address are acknowledged on the bus, but data bytes are not acknowledged.
CURRENT ADDRESS BYTE READ OPERATION

The internal word address pointer maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either read or write) was to the address “n”, the next read operation would access data at address “n+1”.

When the S524A40X10/40X20/40X40 receives a slave address with the R/W bit set to “1”, it issues an ACK and sends the eight bits of data. The master does not acknowledge the transfer but it does generate a Stop condition. In this way, the S524A40X10/40X20/40X40 effectively stops the transmission (see Figure 2-13).

Figure 2-13. Current Address Byte Read Operation
RANDOM ADDRESS BYTE READ OPERATION

Using random read operations, the master can access any memory location at any time. Before it issues the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. This operation is performed in the following steps:

1. The master first issues a Start condition, the slave address, and the word address to be read. (This step sets the internal word address pointer of the S524A40X10/40X20/40X40 to the desired address.)
2. When the master receives an ACK for the word address, it immediately re-issues a start condition followed by another slave address, with the R/W bit set to “1”.
3. The S524A40X10/40X20/40X40 then sends an ACK and the 8-bit data stored at the desired address.
4. At this point, the master does not acknowledge the transmission, but generates a stop condition instead.
5. In response, the S524A40X10/40X20/40X40 stops transmitting data and reverts to its stand-by mode (see Figure 2-14).

Figure 2-14. Random Address Byte Read Operation
SEQUENTIAL READ OPERATION

Sequential read operations can be performed in two ways: as a series of current address reads or as random address reads. The first data is sent in the same way as the previous read mode used on the bus. The next time, however, the master responds with an ACK, indicating that it requires additional data. The S524A40X10/40X20/40X40 continues to output data for each ACK it receives. To stop the sequential read operation, the master does not respond with an ACK, but instead issues a Stop condition.

Using this method, data is output sequentially with the data from address “n” followed by the data from “n+1”. The word address pointer for read operations increments all word addresses, allowing the entire EEPROM to be read sequentially in a single operation. After the entire EEPROM is read, the word address pointer “rolls over” and the S524A40X10/40X20/40X40 continues to transmit data for each ACK it receives from the master (see Figure 2-15).

![Figure 2-15. Sequential Read Operation](image-url)
ELECTRICAL DATA

Table 2-3. Absolute Maximum Ratings

\((T_A = 25^\circ \text{C})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC})</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{IN})</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(V_O)</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_A)</td>
<td>–</td>
<td>– 40 to + 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{STG})</td>
<td>–</td>
<td>– 65 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>(V_{ESD})</td>
<td>HBM</td>
<td>5000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-4. D.C. Electrical Characteristics

\((T_A = –25^\circ \text{C to } +70^\circ \text{C (C), } –40^\circ \text{C to } +85^\circ \text{C (I)}, V_{CC} = 1.8 \text{ V to } 5.5 \text{ V})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>(V_{IL})</td>
<td>SCL, SDA, A0, A1, A2</td>
<td>–</td>
<td>–</td>
<td>0.3 (V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>(V_{IH})</td>
<td>(0.7 V_{CC})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>(I_{LI})</td>
<td>(V_{IN} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>(I_{LO})</td>
<td>(V_O = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 0.15 \text{ mA, } V_{CC} = 1.8 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OL} = 2.1 \text{ mA, } V_{CC} = 2.5 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>Write</td>
<td>(V_{CC} = 5.5 \text{ V, } 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.8 \text{ V, } 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Read</td>
<td>(V_{CC} = 5.5 \text{ V, } 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.8 \text{ V, } 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>µA</td>
</tr>
<tr>
<td>Stand-by current</td>
<td></td>
<td>(V_{CC} = \text{ SDA = SCL = } 5.5 \text{ V, all other inputs = 0 V})</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = \text{ SDA = SCL = } 1.8 \text{ V, all other inputs = 0 V})</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>µA</td>
</tr>
</tbody>
</table>
Table 2-4. D.C. Electrical Characteristics (Continued)

\(T_A = -25^\circ C \) to +70\(^\circ C \) (C), –40\(^\circ C \) to +85\(^\circ C \) (I), \(V_{CC} = 1.8 \) to 5.5 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>(C_{IN})</td>
<td>25(^\circ C), 1MHz, (V_{CC} = 5) V, (V_{IN} = 0) V, A0, A1, A2, SCL and WP pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Input/output capacitance</td>
<td>(C_{I/O})</td>
<td>25(^\circ C), 1MHz, (V_{CC} = 5) V, (V_{I/O} = 0) V, SDA pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-5. A.C. Electrical Characteristics

\(T_A = -25^\circ C \) to +70\(^\circ C \) (C), –40\(^\circ C \) to +85\(^\circ C \) (I), \(V_{CC} = 1.8 \) to 5.5 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>(V_{CC} = 1.8) to 5.5 V (Standard Mode)</th>
<th>(V_{CC} = 2.5) to 5.5 V (Fast Mode)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External clock frequency</td>
<td>(F_{CLK})</td>
<td>–</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Clock high time</td>
<td>(t_{HIGH})</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>0.6</td>
</tr>
<tr>
<td>Clock low time</td>
<td>(t_{LOW})</td>
<td>–</td>
<td>4.7</td>
<td>–</td>
<td>1.3</td>
</tr>
<tr>
<td>Rising time</td>
<td>(t_R)</td>
<td>SDA, SCL</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Falling time</td>
<td>(t_F)</td>
<td>SDA, SCL</td>
<td>–</td>
<td>0.3</td>
<td>–</td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>(t_{HD:STA})</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>0.6</td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>(t_{SU:STA})</td>
<td>–</td>
<td>4.7</td>
<td>–</td>
<td>0.6</td>
</tr>
<tr>
<td>Data input hold time</td>
<td>(t_{HD:DAT})</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Data input setup time</td>
<td>(t_{SU:DAT})</td>
<td>–</td>
<td>0.25</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>(t_{SU:STO})</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>0.6</td>
</tr>
<tr>
<td>Bus free time</td>
<td>(t_{BUF})</td>
<td>Before new transmission</td>
<td>4.7</td>
<td>–</td>
<td>1.3</td>
</tr>
<tr>
<td>Data output valid from clock low (\text{note})</td>
<td>(t_{AA})</td>
<td>–</td>
<td>0.3</td>
<td>3.5</td>
<td>–</td>
</tr>
<tr>
<td>Noise spike width</td>
<td>(t_{SP})</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>(t_{WR})</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES:
1. Upon customers request, up to 400 kHz (Max.) in standard mode and 1 MHz in fast mode are available.
2. When acting as a transmitter, the S524A40X10/40X20/40X40 must provide an internal minimum delay time to bridge the undefined period (minimum 300 ns) of the falling edge of SCL. This is required to avoid unintended generation of a start or stop condition.
Figure 2-16. Timing Diagram for Bus Operations

Figure 2-17. Write Cycle Timing Diagram
OVERVIEW

The S524A40X11/40X21/40X41/60X81/60X51 serial EEPROM has a 1,024/2,048/4,096/8,192/16,384-bit capacity, supporting the standard I²C™-bus serial interface. It is fabricated using Samsung’s most advanced CMOS technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). One of its major features is a hardware-based write protection circuit for the entire memory area. Hardware-based write protection is controlled by the state of the write-protect (WP) pin. Using one-page write mode, you can load up to 16 bytes of data into the EEPROM in a single write operation. Another significant feature of the S524A40X11/40X21/40X41/60X81/60X51 is its support for fast mode and standard mode.

FEATURES

I²C-Bus Interface
- Two-wire serial interface
- Automatic word address increment

EEPROM
- 1K/2K/4K/8K/16K-bit (128/256/512/1,024/2,048-byte) storage area
- 16-byte page buffer
- Hardware-based write protection for the entire EEPROM (using the WP pin)
- EEPROM programming voltage generated on chip
- 1,000,000 erase/write cycles
- 100 years data retention

Operating Characteristics
- Operating voltage
 — 1.8 V to 5.5 V
- Operating current
 — Maximum write current: < 3 mA at 5.5 V
 — Maximum read current: < 200 μA at 5.5 V
 — Maximum stand-by current: < 5 μA at 5.5 V
- Operating temperature range
 — –25°C to + 70°C (commercial)
 — –40°C to + 85°C (industrial)
- Operating clock frequencies
 — 100 kHz at standard mode
 — 400 kHz at fast mode
- Electrostatic discharge (ESD)
 — 5,000 V (HBM)
 — 500 V (MM)

Packages
- 8-pin DIP, SOP, and TSSOP
Figure 3-1. S524A40X11/40X21/40X41/60X81/60X51 Block Diagram
Table 3-1. S524A40X11/40X21/40X41/60X81/60X51 Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Circuit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0, A1, A2</td>
<td>Input</td>
<td>Input pins for device address selection. To configure a device address, these pins should be connected to the VCC or VSS of the device. These pins are internally pulled down to VSS.</td>
<td>1</td>
</tr>
<tr>
<td>VSS</td>
<td>–</td>
<td>Ground pin.</td>
<td>–</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>Bi-directional data pin for the I²C-bus serial data interface. Schmitt trigger input and open-drain output. An external pull-up resistor must be connected to VCC. Typical values for this pull-up resistor are 4.7 kΩ (100 kHz) and 1 kΩ (400 kHz).</td>
<td>3</td>
</tr>
<tr>
<td>SCL</td>
<td>Input</td>
<td>Schmitt trigger input pin for serial clock input.</td>
<td>2</td>
</tr>
<tr>
<td>WP</td>
<td>Input</td>
<td>Input pin for hardware write protection control. If you tie this pin to VCC, the write function is disabled to protect previously written data in the entire memory; if you tie it to VSS, the write function is enabled. This pin is internally pulled down to VSS.</td>
<td>1</td>
</tr>
<tr>
<td>VCC</td>
<td>–</td>
<td>Single power supply.</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: See the following page for diagrams of pin circuit types 1, 2, and 3.
Figure 3-3. Pin Circuit Type 1

Figure 3-4. Pin Circuit Type 2

Figure 3-5. Pin Circuit Type 3
FUNCTION DESCRIPTION

I²C-BUS INTERFACE

The S524A40X11/40X21/40X41/60X81/60X51 supports the I²C-bus serial interface data transmission protocol. The two-wire bus consists of a serial data line (SDA) and a serial clock line (SCL). The SDA and the SCL lines must be connected to \(V_{CC} \) by a pull-up resistor that is located somewhere on the bus.

Any device that puts data onto the bus is defined as the “transmitter” and any device that gets data from the bus is the “receiver.” The bus is controlled by a master device which generates the serial clock and start/stop conditions, controlling bus access. Using the A0, A1, and A2 input pins, up to eight S524A40X11/40X21 (four S524A40X41, two for S524A60X81, one for S524A60X51) devices can be connected to the same I²C-bus as slaves (see Figure 3-6). Both the master and slaves can operate as transmitter or receiver, but the master device determines which bus operating mode would be active.

![Figure 3-6. Typical Configuration (16 Kbits of Memory on the I²C-Bus)](image)

NOTES:
1. The A0 does not affect the device address of the S524A40X41.
2. The A0, A1 do not affect the device address of the S524A60X81.
3. The A0, A1, and A2 do not affect the device address of the S524A60X51.
I2C-BUS PROTOCOLS

Here are several rules for I2C-bus transfers:

— A new data transfer can be initiated only when the bus is currently not busy.
— MSB is always transferred first in transmitting data.
— During a data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is High.

The I2C-bus interface supports the following communication protocols:

• **Bus not busy**: The SDA and the SCL lines remain High level when the bus is not active.
• **Start condition**: Start condition is initiated by a High-to-Low transition of the SDA line while SCL remains High level. All bus commands must be preceded by a start condition.
• **Stop condition**: A stop condition is initiated by a Low-to-High transition of the SDA line while SCL remains High level. All bus operations must be completed by a stop condition (see Figure 3-7).

![Figure 3-7. Data Transmission Sequence](image)

- **Data valid**: Following a start condition, the data becomes valid if the data line remains stable for the duration of the High period of SCL. New data must be put onto the bus while SCL is Low. Bus timing is one clock pulse per data bit. The number of data bytes to be transferred is determined by the master device. The total number of bytes that can be transferred in one operation is theoretically unlimited.

- **ACK (Acknowledgment)**: An ACK signal indicates that a data transfer is completed successfully. The transmitter (the master or the slave) releases the bus after transmitting eight bits. During the 9th clock, which the master generates, the receiver pulls the SDA line low to acknowledge that it successfully received the eight bits of data (see Figure 3-8). But the slave does not send an ACK if an internal write cycle is still in progress.

In data read operations, the slave releases the SDA line after transmitting 8 bits of data and then monitors the line for an ACK signal during the 9th clock period. If an ACK is detected, the slave will continue to transmit data. If an ACK is not detected, the slave terminates data transmission and waits for a stop condition to be issued by the master before returning to its stand-by mode.
Slave Address: After the master initiates a Start condition, it must output the address of the device to be accessed. The most significant four bits of the slave address are called the “device identifier”. The identifier for the S524A40X11/40X21/40X41/60X81/60X51 is “1010B”. The next three bits comprise the address of a specific device. The device address is defined by the state of the A0, A1 and A2 pins. Using this addressing scheme, you can cascade up to eight S524A40X11/40X21 or four S524A40X41 or two S524A60X81 or one S524A60X51 on the bus (see Table 3-2 below). The b1 for S524A40X41 or the b1, b2 for S524A60X81 or the b1, b2, b3 for S524A60X51 are used by the master to select which of the blocks of internal memory (1 block = 256 words) are to be accessed. The bits are in effect the most significant bits of the word address.

Read/Write: The final (eighth) bit of the slave address defines the type of operation to be performed. If the R/W bit is “1”, a read operation is executed. If it is “0”, a write operation is executed.

Table 3-2. Slave Device Addressing

<table>
<thead>
<tr>
<th>Device</th>
<th>Device Identifier</th>
<th>Device Address</th>
<th>R/W Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7 b6 b5 b4</td>
<td>b3 b2 b1 b0</td>
<td></td>
</tr>
<tr>
<td>S524A40X11/40X21</td>
<td>1 0 1 0</td>
<td>A2 A1 A0</td>
<td>R/W</td>
</tr>
<tr>
<td>S524A40X41</td>
<td>1 0 1 0</td>
<td>A2 A1 B0</td>
<td>R/W</td>
</tr>
<tr>
<td>S524A60X81</td>
<td>1 0 1 0</td>
<td>A2 B1 B0</td>
<td>R/W</td>
</tr>
<tr>
<td>S524A60X51</td>
<td>1 0 1 0</td>
<td>B2 B1 B0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

NOTE: The B2, B1, B0 correspond to the MSB of the memory array address word.
BYTE WRITE OPERATION

In a complete byte write operation, the master transmits the slave address, word address, and one data byte to the S524A40X11/40X21/40X41/60X81/60X51 slave device (see Figure 3-9).

![Figure 3-9. Byte Write Operation](image)

Following the Start condition, the master sends the device identifier (4 bits), the device address (3 bits), and an R/W bit set to “0” onto the bus. Then the addressed S524A40X11/40X21/40X41/60X81/60X51 generates an ACK and waits for the next byte. The next byte to be transmitted by the master is the word address. This 8-bit address is written into the word address pointer of the S524A40X11/40X21/40X41/60X81/60X51.

When the S524A40X11/40X21/40X41/60X81/60X51 receives the word address, it responds by issuing an ACK and then waits for the next 8-bit data. When it receives the data byte, the S524A40X11/40X21/40X41/60X81/60X51 again responds with an ACK. The master terminates the transfer by generating a Stop condition, at which time the S524A40X11/40X21/40X41/60X81/60X51 begins the internal write cycle.

While the internal write cycle is in progress, all S524A40X11/40X21/40X41/60X81/60X51 inputs are disabled and the S524A40X11/40X21/40X41/60X81/60X51 does not respond to additional requests from the master.
PAGE WRITE OPERATION

The S524A40X11/40X21/40X41/60X81/60X51 can also perform 16-byte page write operation. A page write operation is initiated in the same way as a byte write operation. However, instead of finishing the write operation after the first data byte is transferred, the master can transmit up to 15 additional bytes. The S524A40X11/40X21/40X41/60X81/60X51 responds with an ACK each time it receives a complete byte of data (see Figure 3-10).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slave Address</th>
<th>Word Address (n)</th>
<th>Data (n)</th>
<th>Data (≤ n + 15)</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

Figure 3-10. Page Write Operation

The S524A40X11/40X21/40X41/60X81/60X51 automatically increments the word address pointer each time it receives a complete data byte. When one byte has been received, the internal word address pointer increments to the next address and the next data byte can be received.

If the master transmits more than 16 bytes before it generates a stop condition to end the page write operation, the S524A40X11/40X21/40X41/60X81/60X51 word address pointer value "rolls over" and the previously received data is overwritten. If the master transmits less than 16 bytes and generates a stop condition, the S524A40X11/40X21/40X41/60X81/60X51 writes the received data to the corresponding EEPROM address.

During a page write operation, all inputs are disabled and there is no response to additional requests from the master until the internal write cycle is completed.
POLLS FOR AN ACK SIGNAL

When the master issues a stop condition to initiate a write cycle, the S524A40X11/40X21/40X41/60X81/60X51 starts an internal write cycle. The master can then immediately begin polling for an ACK from the slave device.

To poll for an ACK signal in a write operation, the master issues a start condition followed by the slave address. As long as the S524A40X11/40X21/40X41/60X81/60X51 remains busy with the write operation, no ACK is returned. When the S524A40X11/40X21/40X41/60X81/60X51 completes the write operation, it returns an ACK and the master can then proceed with the next read or write operation (see Figure 3-11).

![Figure 3-11. Master Polling for an ACK Signal from a Slave Device](image-url)
HARDWARE-BASED WRITE PROTECTION

You can also write-protect the entire memory area of the S524A40X11/40X21/40X41/60X81/60X51. This method of write protection is controlled by the state of the Write Protect (WP) pin.

When the WP pin is connected to \(V_{CC} \), any attempt to write a value to the memory is ignored. The S524A40X11/40X21/40X41/60X81/60X51 will acknowledge slave and word address, but it will not generate an acknowledge after receiving the first byte of the data. Thus the write cycle will not be started when the stop condition is generated. By connecting the WP pin to \(V_{SS} \), the write function is allowed for the entire memory.

These write protection features effectively change the EEPROM to a ROM in order to prevent data from being overwritten. Whenever the write function is disabled, a slave address and a word address are acknowledged on the bus, but data bytes are not acknowledged.

CURRENT ADDRESS BYTE READ OPERATION

The internal word address pointer maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either read or write) was to the address “n”, the next read operation would access data at address “n+1”.

When the S524A40X11/40X21/40X41/60X81/60X51 receives a slave address with the R/W bit set to “1”, it issues an ACK and sends the eight bits of data. The master does not acknowledge the transfer but it does generate a Stop condition. In this way, the S524A40X11/40X21/40X41/60X81/60X51 effectively stops the transmission (see Figure 3-12).

![Figure 3-12. Current Address Byte Read Operation](image-url)
RANDOM ADDRESS BYTE READ OPERATION

Using random read operations, the master can access any memory location at any time. Before it issues the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. This operation is performed in the following steps:

1. The master first issues a Start condition, the slave address, and the word address to be read. (This step sets the internal word address pointer of the S524A40X11/40X21/40X41/60X81/60X51 to the desired address.)
2. When the master receives an ACK for the word address, it immediately re-issues a start condition followed by another slave address, with the R/W bit set to “1”.
3. The S524A40X11/40X21/40X41/60X81/60X51 then sends an ACK and the 8-bit data stored at the desired address.
4. At this point, the master does not acknowledge the transmission, but generates a stop condition instead.
5. In response, the S524A40X11/40X21/40X41/60X81/60X51 stops transmitting data and reverts to its stand-by mode (see Figure 3-13).

![Figure 3-13. Random Address Byte Read Operation](image-url)
SEQUENTIAL READ OPERATION

Sequential read operations can be performed in two ways: as a series of current address reads or as random address reads. The first data is sent in the same way as the previous read mode used on the bus. The next time, however, the master responds with an ACK, indicating that it requires additional data. The S524A40X11/40X21/40X41/60X81/60X51 continues to output data for each ACK it receives. To stop the sequential read operation, the master does not respond with an ACK, but instead issues a Stop condition.

Using this method, data is output sequentially with the data from address “n” followed by the data from “n+1”. The word address pointer for read operations increments all word addresses, allowing the entire EEPROM to be read sequentially in a single operation. After the entire EEPROM is read, the word address pointer “rolls over” and the S524A40X11/40X21/40X41/60X81/60X51 continues to transmit data for each ACK it receives from the master (see Figure 3-14).

Figure 3-14. Sequential Read Operation
ELECTRICAL DATA

Table 3-3. Absolute Maximum Ratings

\(T_A = 25°C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC})</td>
<td>–</td>
<td>–0.3 to +7.0 V</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{IN})</td>
<td>–</td>
<td>–0.3 to +7.0 V</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(V_O)</td>
<td>–</td>
<td>–0.3 to +7.0 V</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_A)</td>
<td>–</td>
<td>–40 to +85 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{STG})</td>
<td>–</td>
<td>–65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>(V_{ESD})</td>
<td>HBM</td>
<td>5000 V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM</td>
<td>500 V</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-4. D.C. Electrical Characteristics

\(T_A = –25°C \ to +70°C (C), –40°C to +85°C (I), V_{CC} = 1.8 \text{ V} \ to 5.5 \text{ V} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>(V_{IL})</td>
<td>SCL, SDA, A0, A1, A2</td>
<td>–</td>
<td>–</td>
<td>0.3 (V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>(V_{IH})</td>
<td>(V_{IN} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>0.7 (V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>(I_{LI})</td>
<td>(V_{IN} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>(I_{LO})</td>
<td>(V_{O} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>Output low voltage</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 0.15 \text{ mA}, V_{CC} = 1.8 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.2 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OL} = 2.1 \text{ mA}, V_{CC} = 2.5 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.4 V</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td></td>
<td>Write</td>
<td>–</td>
<td>–</td>
<td>3 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5.5 \text{ V}, 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td></td>
<td>(V_{CC} = 1.8 \text{ V}, 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5.5 \text{ V}, 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>60 µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.8 \text{ V}, 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>5 µA</td>
<td></td>
</tr>
<tr>
<td>Stand-by current</td>
<td></td>
<td>(V_{CC} = SDA = SCL = 5.5 \text{ V}, all other inputs = 0 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>1 µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = SDA = SCL = 1.8 \text{ V}, all other inputs = 0 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>1 µA</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4. D.C. Electrical Characteristics (Continued)

\((T_A = -25^\circ\text{C} \text{ to } +70^\circ\text{C} (C), -40^\circ\text{C} \text{ to } +85^\circ\text{C} (I), V_{CC} = 1.8 \text{ V to } 5.5 \text{ V})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>(C_{IN})</td>
<td>(25^\circ\text{C}, 1\text{MHz}, V_{CC} = 5 \text{ V}, V_{IN} = 0 \text{ V},)</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A_0, A_1, A_2, \text{SCL and WP pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output capacitance</td>
<td>(C_{I/O})</td>
<td>(25^\circ\text{C}, 1\text{MHz}, V_{CC} = 5 \text{ V}, V_{I/O} = 0 \text{ V},)</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{SDA pin})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-5. A.C. Electrical Characteristics

\((T_A = -25^\circ\text{C} \text{ to } +70^\circ\text{C} (C), -40^\circ\text{C} \text{ to } +85^\circ\text{C} (I), V_{CC} = 1.8 \text{ V to } 5.5 \text{ V})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>(V_{CC} = 1.8 \text{ to } 5.5 \text{ V}) (Standard Mode)</th>
<th>(V_{CC} = 2.5 \text{ to } 5.5 \text{ V}) (Fast Mode)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External clock frequency</td>
<td>(F_{CLK})</td>
<td>–</td>
<td>0 \text{ to } 100 \text{ kHz}</td>
<td>0 \text{ to } 400 \text{ kHz}</td>
<td>kHz</td>
</tr>
<tr>
<td>Clock high time</td>
<td>(t_{HIGH})</td>
<td>–</td>
<td>4 \text{ μs}</td>
<td>0.6 \text{ μs}</td>
<td>μs</td>
</tr>
<tr>
<td>Clock low time</td>
<td>(t_{LOW})</td>
<td>–</td>
<td>4.7 \text{ μs}</td>
<td>1.3 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Rising time</td>
<td>(t_{R})</td>
<td>SDA, SCL</td>
<td>– \text{ μs}</td>
<td>1 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Falling time</td>
<td>(t_{F})</td>
<td>SDA, SCL</td>
<td>– \text{ μs}</td>
<td>0.3 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>(t_{HD:STA})</td>
<td>–</td>
<td>4 \text{ μs}</td>
<td>0.6 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>(t_{SU:STA})</td>
<td>–</td>
<td>4.7 \text{ μs}</td>
<td>0.6 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Data input hold time</td>
<td>(t_{HD:DAT})</td>
<td>–</td>
<td>0 \text{ μs}</td>
<td>0 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Data input setup time</td>
<td>(t_{SU:DAT})</td>
<td>–</td>
<td>0.25 \text{ μs}</td>
<td>0.1 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>(t_{SU:STO})</td>
<td>–</td>
<td>4 \text{ μs}</td>
<td>0.6 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td>Bus free time</td>
<td>(t_{BUF})</td>
<td>Before new</td>
<td>4.7 \text{ μs}</td>
<td>1.3 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data output valid from clock low</td>
<td>(t_{AA})</td>
<td>–</td>
<td>0.3 \text{ μs}</td>
<td>3.5 \text{ μs}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(note)</td>
<td></td>
<td>–</td>
<td>0.9</td>
</tr>
<tr>
<td>Noise spike width</td>
<td>(t_{SP})</td>
<td>–</td>
<td>100 \text{ ns}</td>
<td>50 \text{ ns}</td>
<td></td>
</tr>
<tr>
<td>Write cycle time</td>
<td>(t_{WR})</td>
<td>–</td>
<td>5 \text{ μs}</td>
<td>5 \text{ μs}</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Upon customers request, up to 400 kHz (Max.) in standard mode and 1 MHz in fast mode are available.
2. When acting as a transmitter, the S524A40X11/40X21/40X41/60X81/60X51 must provide an internal minimum delay time to bridge the undefined period (minimum 300 ns) of the falling edge of SCL. This is required to avoid unintended generation of a start or stop condition.
Figure 3-15. Timing Diagram for Bus Operations

Figure 3-16. Write Cycle Timing Diagram
OVERVIEW

The S524AB0X91/B0XB1 serial EEPROM has a 32K/64K-bit (4,096/8,192 bytes) capacity, supporting the standard I²C™-bus serial interface. It is fabricated using Samsung’s most advanced CMOS technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). One of its major feature is a hardware-based write protection circuit for the entire memory area. Hardware-based write protection is controlled by the state of the write-protect (WP) pin. Using one-page write mode, you can load up to 32 bytes of data into the EEPROM in a single write operation. Another significant feature of the S524AB0X91/B0XB1 is its support for fast mode and standard mode.

FEATURES

I²C-Bus Interface

- Two-wire serial interface
- Automatic word address increment

EEPROM

- 32K/64K-bit (4,096/8,192 bytes) storage area
- 32-byte page buffer
- Hardware-based write protection for the entire EEPROM (using the WP pin)
- EEPROM programming voltage generated on chip
- 1,000,000 erase/write cycles
- 100 years data retention

Operating Characteristics

- Operating voltage
 - 1.8 V to 5.5 V
- Operating current
 - Maximum write current: < 3 mA at 5.5 V
 - Maximum read current: < 400 μA at 5.5 V
 - Maximum stand-by current: < 5 μA at 5.5 V
- Operating temperature range
 - –25°C to + 70°C (commercial)
 - –40°C to + 85°C (industrial)
- Operating clock frequencies
 - 100 kHz at standard mode
 - 400 kHz at fast mode
- Electrostatic discharge (ESD)
 - 5,000 V (HBM)
 - 500 V (MM)

Packages

- 8-pin DIP, SOP, and TSSOP
Figure 4-1. S524AB0X91/B0XB1 Block Diagram
NOTE: The S524AB0X91/B0XB1 is available in 8-pin DIP, SOP, and TSSOP package.

Figure 4-2. Pin Assignment Diagram

Table 4-1. S524AB0X91/B0XB1 Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Circuit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0, A1, A2</td>
<td>Input</td>
<td>Input pins for device address selection. To configure a device address, these pins should be connected to the V_{CC} or V_{SS} of the device. These pins are internally pulled down to V_{SS}.</td>
<td>1</td>
</tr>
<tr>
<td>V_{SS}</td>
<td>–</td>
<td>Ground pin.</td>
<td>–</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>Bi-directional data pin for the I²C-bus serial data interface. Schmitt trigger input and open-drain output. An external pull-up resistor must be connected to V_{DD}. Typical values for this pull-up resistor are 4.7 KΩ (100 KHz) and 1 KΩ (400 KHz).</td>
<td>3</td>
</tr>
<tr>
<td>SCL</td>
<td>Input</td>
<td>Schmitt trigger input pin for serial clock input.</td>
<td>2</td>
</tr>
<tr>
<td>WP</td>
<td>Input</td>
<td>Input pin for hardware write protection control. If you tie this pin to V_{CC}, the write function is disabled to protect previously written data in the entire memory; if you tie it to V_{SS}, the write function is enabled. This pin is internally pulled down to V_{SS}.</td>
<td>1</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>–</td>
<td>Single power supply.</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: See the following page for diagrams of pin circuit types 1, 2, and 3.
Figure 4-3. Pin Circuit Type 1

Figure 4-4. Pin Circuit Type 2

Figure 4-5. Pin Circuit Type 3
FUNCTION DESCRIPTION

I²C-BUS INTERFACE

The S524AB0X91/B0XB1 supports the I²C-bus serial interface data transmission protocol. The two-wire bus consists of a serial data line (SDA) and a serial clock line (SCL). The SDA and the SCL lines must be connected to VCC by a pull-up resistor that is located somewhere on the bus.

Any device that puts data onto the bus is defined as a “transmitter” and any device that gets data from the bus is a “receiver.” The bus is controlled by a master device which generates the serial clock and start/stop conditions, controlling bus access. Using the A0, A1, and A2 input pins, up to eight S524AB0X91/B0XB1 devices can be connected to the same I²C-bus as slaves (see Figure 4-6). Both the master and slaves can operate as a transmitter or a receiver, but the master device determines which bus operating mode would be active.

![Figure 4-6. Typical Configuration](image)
I²C-BUS PROTOCOLS

Here are several rules for I²C-bus transfers:

— A new data transfer can be initiated only when the bus is currently not busy.
— MSB is always transferred first in transmitting data.
— During a data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is High.

The I²C-bus interface supports the following communication protocols:

• Bus not busy: The SDA and the SCL lines remain in High level when the bus is not active.
• Start condition: A start condition is initiated by a High-to-Low transition of the SDA line while SCL remains in High level. All bus commands must be preceded by a start condition.
• Stop condition: A stop condition is initiated by a Low-to-High transition of the SDA line while SCL remains in High level. All bus operations must be completed by a stop condition (see Figure 4-7).

![Figure 4-7. Data Transmission Sequence](image)

- **Data valid**: Following a start condition, the data becomes valid if the data line remains stable for the duration of the High period of SCL. New data must be put onto the bus while SCL is Low. Bus timing is one clock pulse per data bit. The number of data bytes to be transferred is determined by the master device. The total number of bytes that can be transferred in one operation is theoretically unlimited.
- **ACK (Acknowledge)**: An ACK signal indicates that a data transfer is completed successfully. The transmitter (the master or the slave) releases the bus after transmitting eight bits. During the 9th clock, which the master generates, the receiver pulls the SDA line low to acknowledge that it has successfully received the eight bits of data (see Figure 4-8). But the slave does not send an ACK if an internal write cycle is still in progress.

In data read operations, the slave releases the SDA line after transmitting 8 bits of data and then monitors the line for an ACK signal during the 9th clock period. If an ACK is detected but no stop condition, the slave will continue to transmit data. If an ACK is not detected, the slave terminates data transmission and waits for a stop condition to be issued by the master before returning to its stand-by mode.
• **Slave Address:** After the master initiates a start condition, it must output the address of the device to be accessed. The most significant four bits of the slave address are called the “device identifier.” The identifier for the S524AB0X91/B0XB1 is “1010B”. The next three bits comprise the address of a specific device. The device address is defined by the state of the A0, A1, and A2 pins. Using this addressing scheme, you can cascade up to eight S524AB0X91/B0XB1s on the bus (see Figure 4-9 below).

• **Read/Write:** The final (eighth) bit of the slave address defines the type of operation to be performed. If the R/W bit is “1”, a read operation is executed. If it is “0”, a write operation is executed.

![Figure 4-8. Acknowledge Response From Receiver](image)

![Figure 4-9. Device Address](image)
BYTE WRITE OPERATION

A write operation requires 2-byte word addresses, the first (high) word address and the second (low) word address. In a byte write operation, the master transmits the slave address, the first word address, the second word address, and one data byte to the S524AB0X91/B0XB1 slave device (see Figure 4-10).

Following a start condition, the master puts the device identifier (4 bits), the device address (3 bits), and an R/W bit set to “0” onto the bus. Upon the receipt of the slave address, the S524AB0X91/B0XB1 responds with an ACK. And the master transmits the first word address, the second word address, and one byte data to be written into the addressed memory location.

The master terminates the transfer by generating a stop condition, at which time the S524AB0X91/B0XB1 begins the internal write cycle. While the internal write cycle is in progress, all S524AB0X91/B0XB1 inputs are disabled and the S524AB0X91/B0XB1 does not respond to any additional request from the master.
PAGE WRITE OPERATION

The S524AB0X91/B0XB1 can also perform 32-byte page write operation. A page write operation is initiated in the same way as a byte write operation. However, instead of finishing the write operation after the first data byte is transferred, the master can transmit up to 31 additional bytes. The S524AB0X91/B0XB1 responds with an ACK each time it receives a complete byte of data (see Figure 4-11).

![Page Write Operation Diagram](image)

The S524AB0X91/B0XB1 automatically increments the word address pointer each time it receives a complete data byte. When one byte is received, the internal word address pointer increments to the next address so that the next data byte can be received.

If the master transmits more than 32 bytes before it generates a stop condition to end the page write operation, the S524AB0X91/B0XB1 word address pointer value “rolls over” and the previously received data is overwritten. If the master transmits less than 32 bytes and generates a stop condition, the S524AB0X91/B0XB1 writes the received data to the corresponding EEPROM address.

During a page write operation, all inputs are disabled and there would be no response to additional requests from the master until the internal write cycle is completed.
POLLING FOR AN ACK SIGNAL

When the master issues a stop condition to initiate a write cycle, the S524AB0X91/B0XB1 starts an internal write cycle. The master can then immediately begin polling for an ACK from the slave device to determine whether the write cycle is completed.

To poll for an ACK signal in a write operation, the master issues a start condition followed by the slave address. As long as the S524AB0X91/B0XB1 remains busy with the write operation, no ACK is returned. When the S524AB0X91/B0XB1 completes the write operation, it returns an ACK and the master can then proceed with the next read or write operation (see Figure 4-12).

![Flowchart for Master Polling for an ACK Signal from a Slave Device](chart.png)

Figure 4-12. Master Polling for an ACK Signal from a Slave Device
HARDWARE-BASED WRITE PROTECTION

You can also write-protect the entire memory area of the S524AB0X91/B0XB1. This write protection is controlled by the state of the Write Protect (WP) pin.

When the WP pin is connected to VCC, any attempt to write a value to it is ignored. The S524AB0X91/B0XB1 will acknowledge slave and word addresses, but it will not generate an acknowledge after receiving the first byte of data. In this situation, the write cycle will not be started when a stop condition is generated. By connecting the WP pin to VSS, the write function is allowed for the entire memory.

These write protection features effectively change the EEPROM to a ROM in order to protect data from being overwritten. Whenever the write function is disabled, a slave address and word addresses are acknowledged on the bus, but data bytes are not acknowledged.

CURRENT ADDRESS BYTE READ OPERATION

The internal word address pointer maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either read or write) was to the address “n”, the next read operation would be to access data at address “n+1”.

When the S524AB0X91/B0XB1 receives a slave address with the R/W bit set to “1”, it issues an ACK and sends the eight bits of data. In a current address byte read operation, the master does not acknowledge the data, and it generates a stop condition, forcing the S524AB0X91/B0XB1 to stop the transmission (see Figure 4-13).

Figure 4-13. Current Address Byte Read Operation
RANDOM ADDRESS BYTE READ OPERATION

Using random read operations, the master can access any memory location at any time. Before it issues the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. This operation is performed in the following steps:

1. The master first issues a start condition, the slave address, and the word address (the first and the second addresses) to be read. (This step sets the internal word address pointer of the S524AB0X91/B0XB1 to the desired address.)

2. When the master receives an ACK for the word address, it immediately re-issues a start condition followed by another slave address, with the R/W bit set to “1”.

3. The S524AB0X91/B0XB1 then sends an ACK and the 8-bit data stored at the pointed address.

4. At this point, the master does not acknowledge the transmission, generating a stop condition.

5. The S524AB0X91/B0XB1 stops transmitting data and reverts to stand-by mode (see Figure 4-14).

Figure 4-14. Random Address Byte Read Operation
SEQUENTIAL READ OPERATION

Sequential read operations can be performed in two ways: current address sequential read operation, and random address sequential read operation. The first data is sent in either of the two ways, current address byte read operation or random address byte read operation described earlier. If the master responds with an ACK, the S524AB0X91/B0XB1 continues transmitting data. If the master does not issue an ACK, generating a stop condition, the slave stops transmission, ending the sequential read operation.

Using this method, data is output sequentially from address “n” followed by address “n+1”. The word address pointer for read operations increments to all word addresses, allowing the entire EEPROM to be read sequentially in a single operation. After the entire EEPROM is read, the word address pointer “rolls over” and the S524AB0X91/B0XB1 continues to transmit data for each ACK it receives from the master (see Figure 4-15).

Figure 4-15. Sequential Read Operation
ELECTRICAL DATA

Table 4-2. Absolute Maximum Ratings

\((T_A = 25^\circ C) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC})</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{IN})</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(V_O)</td>
<td>–</td>
<td>– 0.3 to + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_A)</td>
<td>–</td>
<td>– 40 to + 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{STG})</td>
<td>–</td>
<td>– 65 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>(V_{ESD})</td>
<td>HBM</td>
<td>5000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-3. D.C. Electrical Characteristics

\((T_A = – 25^\circ C \text{ to } + 70^\circ C \text{ (Commercial), } – 40^\circ C \text{ to } + 85^\circ C \text{ (Industrial), } V_{CC} = 1.8 \text{ V to } 5.5 \text{ V}) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>(V_{IL})</td>
<td>SCL, SDA, A0, A1, A2</td>
<td>–</td>
<td>–</td>
<td>0.3 (V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>(V_{IH})</td>
<td>(0.7 \ V_{CC})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>(I_{LI})</td>
<td>(V_{IN} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>(I_{LO})</td>
<td>(V_{O} = 0 \text{ to } V_{CC})</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 0.15 \text{ mA, } V_{CC} = 1.8 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OL} = 2.1 \text{ mA, } V_{CC} = 2.5 \text{ V})</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>Write</td>
<td>(I_{CC1})</td>
<td>(V_{CC} = 5.5 \text{ V, } 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{CC2})</td>
<td>(V_{CC} = 1.8 \text{ V, } 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Read</td>
<td>(I_{CC3})</td>
<td>(V_{CC} = 5.5 \text{ V, } 400 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{CC4})</td>
<td>(V_{CC} = 1.8 \text{ V, } 100 \text{ kHz})</td>
<td>–</td>
<td>–</td>
<td>60</td>
</tr>
<tr>
<td>Stand-by current</td>
<td></td>
<td>(I_{CC5})</td>
<td>(V_{CC} = \text{ SDA = SCL = 5.5 \text{ V, all other inputs = 0 V}})</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{CC6})</td>
<td>(V_{CC} = \text{ SDA = SCL = 1.8 \text{ V, all other inputs = 0 V}})</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4-3. D.C. Electrical Characteristics (Continued)

(T\textsubscript{A} = – 25°C to + 70°C (Commercial), – 40°C to + 85°C (Industrial), V\textsubscript{CC} = 1.8 V to 5.5 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>C\textsubscript{IN}</td>
<td>25°C, 1MHz, V\textsubscript{CC} = 5 V, V\textsubscript{IN} = 0 V, A0, A1, A2, SCL and WP pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Input/Output capacitance</td>
<td>C\textsubscript{I/O}</td>
<td>25°C, 1MHz, V\textsubscript{CC} = 5 V, V\textsubscript{I/O} = 0 V, SDA pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-4. A.C. Electrical Characteristics

(T\textsubscript{A} = – 25°C to + 70°C (Commercial), – 40°C to + 85°C (Industrial), V\textsubscript{CC} = 1.8 V to 5.5 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>V\textsubscript{CC} = 1.8 to 5.5 V (Standard Mode)</th>
<th>V\textsubscript{CC} = 2.5 to 5.5 V (Fast Mode)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External clock frequency</td>
<td>F\textsubscript{clk}</td>
<td>–</td>
<td>0 100 (1)</td>
<td>0 400 (1)</td>
<td>kHz</td>
</tr>
<tr>
<td>Clock High time</td>
<td>t\textsubscript{HIGH}</td>
<td>–</td>
<td>4 –</td>
<td>0.6 –</td>
<td>μs</td>
</tr>
<tr>
<td>Clock Low time</td>
<td>t\textsubscript{LOW}</td>
<td>–</td>
<td>4.7 –</td>
<td>1.3 –</td>
<td>μs</td>
</tr>
<tr>
<td>Rising time</td>
<td>t\textsubscript{R}</td>
<td>SDA, SCL</td>
<td>– 1</td>
<td>– 0.3</td>
<td>μs</td>
</tr>
<tr>
<td>Falling time</td>
<td>t\textsubscript{F}</td>
<td>SDA, SCL</td>
<td>– 0.3</td>
<td>– 0.3</td>
<td>μs</td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>t\textsubscript{HD:STA}</td>
<td>–</td>
<td>4 –</td>
<td>0.6 –</td>
<td>μs</td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>t\textsubscript{SU:STA}</td>
<td>–</td>
<td>4.7 –</td>
<td>0.6 –</td>
<td>μs</td>
</tr>
<tr>
<td>Data input hold time</td>
<td>t\textsubscript{HD:DAT}</td>
<td>–</td>
<td>0 –</td>
<td>0 –</td>
<td>μs</td>
</tr>
<tr>
<td>Data input setup time</td>
<td>t\textsubscript{SU:DAT}</td>
<td>–</td>
<td>0.25 –</td>
<td>0.1 –</td>
<td>μs</td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>t\textsubscript{SU:STO}</td>
<td>–</td>
<td>4 –</td>
<td>0.6 –</td>
<td>μs</td>
</tr>
<tr>
<td>Bus free time</td>
<td>t\textsubscript{BUF}</td>
<td>Before new transmission</td>
<td>4.7 –</td>
<td>1.3 –</td>
<td>μs</td>
</tr>
<tr>
<td>Data output valid from</td>
<td>t\textsubscript{AA}</td>
<td>–</td>
<td>0.3 3.5 –</td>
<td>– 0.9</td>
<td>μs</td>
</tr>
<tr>
<td>clock low</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise spike width</td>
<td>t\textsubscript{SP}</td>
<td>–</td>
<td>– 100 –</td>
<td>– 50</td>
<td>ns</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>t\textsubscript{WR}</td>
<td>–</td>
<td>– 5 –</td>
<td>– 5 –</td>
<td>ms</td>
</tr>
</tbody>
</table>

NOTES:
1. Upon customers request, up to 400 kHz (Max.) in standard mode and 1 MHz in fast mode are available.
2. When acting as a transmitter, the S524AB0X91/B0XB1 must provide an internal minimum delay time to bridge the undefined period (minimum 300 ns) of the falling edge of SCL. This is required to avoid unintended generation of a start or stop condition.
Figure 4-16. Timing Diagram for Bus Operations

Figure 4-17. Write Cycle Timing Diagram
OVERVIEW

The S524AD0XD1/D0XF1 serial EEPROM has a 128K/256K-bit (16,384/32,768 bytes) capacity, supporting the standard I²C™-bus serial interface. It is fabricated using Samsung’s most advanced CMOS technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). One of its major feature is a hardware-based write protection circuit for the entire memory area. Hardware-based write protection is controlled by the state of the write-protect (WP) pin. Using one-page write mode, you can load up to 64 bytes of data into the EEPROM in a single write operation. Another significant feature of the S524AD0XD1/D0XF1 is its support for fast mode and standard mode.

FEATURES

I²C-Bus Interface

- Two-wire serial interface
- Automatic word address increment

EEPROM

- 128K/256K-bit (16,384/32,768 bytes) storage area
- 64-byte page buffer
- Hardware-based write protection for the entire EEPROM (using the WP pin)
- EEPROM programming voltage generated on chip
- 500,000 erase/write cycles
- 50 years data retention

Operating Characteristics

- Operating voltage
 - 1.8 V to 5.5 V
- Operating current
 - Maximum write current: < 3 mA at 5.5 V
 - Maximum read current: < 400 μA at 5.5 V
 - Maximum stand-by current: < 5 μA at 5.5 V
- Operating temperature range
 - –25°C to +70°C (commercial)
 - –40°C to +85°C (industrial)
- Operating clock frequencies
 - 400 kHz at standard mode
 - 1 MHz at fast mode
- Electrostatic discharge (ESD)
 - 5,000 V (HBM)
 - 500 V (MM)

Packages

- 8-pin DIP, and TSSOP
Figure 5-1. S524AD0XD1/D0XF1 Block Diagram
Figure 5-2. Pin Assignment Diagram

Table 5-1. S524AD0XD1/D0XF1 Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Circuit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0, A1, A2</td>
<td>Input</td>
<td>Input pins for device address selection. To configure a device address, these pins should be connected to the V_{cc} or V_{ss} of the device. These pins are internally pulled down to V_{ss}.</td>
<td>1</td>
</tr>
<tr>
<td>V_{ss}</td>
<td>–</td>
<td>Ground pin.</td>
<td>–</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O</td>
<td>Bi-directional data pin for the I²C-bus serial data interface. Schmitt trigger input and open-drain output. An external pull-up resistor must be connected to V_{dd}. Typical values for this pull-up resistor are 4.7 KΩ (100 KHz) and 1 KΩ (400 KHz).</td>
<td>3</td>
</tr>
<tr>
<td>SCL</td>
<td>Input</td>
<td>Schmitt trigger input pin for serial clock input.</td>
<td>2</td>
</tr>
<tr>
<td>WP</td>
<td>Input</td>
<td>Input pin for hardware write protection control. If you tie this pin to V_{cc}, the write function is disabled to protect previously written data in the entire memory; if you tie it to V_{ss}, the write function is enabled. This pin is internally pulled down to V_{ss}.</td>
<td>1</td>
</tr>
<tr>
<td>V_{cc}</td>
<td>–</td>
<td>Single power supply.</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: See the following page for diagrams of pin circuit types 1, 2, and 3.
Figure 5-3. Pin Circuit Type 1

Figure 5-4. Pin Circuit Type 2

Figure 5-5. Pin Circuit Type 3
FUNCTION DESCRIPTION

I²C-BUS INTERFACE

The S524AD0XD1/D0XF1 supports the I²C-bus serial interface data transmission protocol. The two-wire bus consists of a serial data line (SDA) and a serial clock line (SCL). The SDA and the SCL lines must be connected to VCC by a pull-up resistor that is located somewhere on the bus.

Any device that puts data onto the bus is defined as a “transmitter” and any device that gets data from the bus is a “receiver.” The bus is controlled by a master device which generates the serial clock and start/stop conditions, controlling bus access. Using the A0, A1, and A2 input pins, up to eight S524AD0XD1/D0XF1 devices can be connected to the same I²C-bus as slaves (see Figure 5-6). Both the master and slaves can operate as a transmitter or a receiver, but the master device determines which bus operating mode would be active.

Figure 5-6. Typical Configuration
I²C-BUS PROTOCOLS

Here are several rules for I²C-bus transfers:

— A new data transfer can be initiated only when the bus is currently not busy.
— MSB is always transferred first in transmitting data.
— During a data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is High.

The I²C-bus interface supports the following communication protocols:

• **Bus not busy:** The SDA and the SCL lines remain in High level when the bus is not active.
• **Start condition:** A start condition is initiated by a High-to-Low transition of the SDA line while SCL remains in High level. All bus commands must be preceded by a start condition.
• **Stop condition:** A stop condition is initiated by a Low-to-High transition of the SDA line while SCL remains in High level. All bus operations must be completed by a stop condition (see Figure 5-7).

Figure 5-7. Data Transmission Sequence

- **Data valid:** Following a start condition, the data becomes valid if the data line remains stable for the duration of the High period of SCL. New data must be put onto the bus while SCL is Low. Bus timing is one clock pulse per data bit. The number of data bytes to be transferred is determined by the master device. The total number of bytes that can be transferred in one operation is theoretically unlimited.

- **ACK (Acknowledge):** An ACK signal indicates that a data transfer is completed successfully. The transmitter (the master or the slave) releases the bus after transmitting eight bits. During the 9th clock, which the master generates, the receiver pulls the SDA line low to acknowledge that it has successfully received the eight bits of data (see Figure 5-8). But the slave does not send an ACK if an internal write cycle is still in progress.

In data read operations, the slave releases the SDA line after transmitting 8 bits of data and then monitors the line for an ACK signal during the 9th clock period. If an ACK is detected but no stop condition, the slave will continue to transmit data. If an ACK is not detected, the slave terminates data transmission and waits for a stop condition to be issued by the master before returning to its stand-by mode.
Slave Address: After the master initiates a start condition, it must output the address of the device to be accessed. The most significant four bits of the slave address are called the “device identifier.” The identifier for the S524AD0XD1/D0XF1 is “1010B”. The next three bits comprise the address of a specific device. The device address is defined by the state of the A0, A1, and A2 pins. Using this addressing scheme, you can cascade up to eight S524AD0XD1/D0XF1s on the bus (see Figure 5-9 below).

Read/Write: The final (eighth) bit of the slave address defines the type of operation to be performed. If the R/W bit is “1”, a read operation is executed. If it is “0”, a write operation is executed.

Figure 5-9. Device Address

<table>
<thead>
<tr>
<th>Slave Address</th>
<th>Device Identifier</th>
<th>Device Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 A2 A1 A0 R/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Word Address</th>
<th>First (High) Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(2) A14(1) A13 A12 A11 A10 A9 A8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Word Address</th>
<th>Second (Low) Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7 A6 A5 A4 A3 A2 A1 A0</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. The A14 is "don't care" for the S524AD0XD1.
2. X = Don't care
BYTE WRITE OPERATION

A write operation requires 2-byte word addresses, the first (high) word address and the second (low) word address. In a byte write operation, the master transmits the slave address, the first word address, the second word address, and one data byte to the S524AD0XD1/D0XF1 slave device (see Figure 5-10).

Following a start condition, the master puts the device identifier (4 bits), the device address (3 bits), and an R/W bit set to “0” onto the bus. Upon the receipt of the slave address, the S524AD0XD1/D0XF1 responds with an ACK. And the master transmits the first word address, the second word address, and one byte data to be written into the addressed memory location.

The master terminates the transfer by generating a stop condition, at which time the S524AD0XD1/D0XF1 begins the internal write cycle. While the internal write cycle is in progress, all S524AD0XD1/D0XF1 inputs are disabled and the S524AD0XD1/D0XF1 does not respond to any additional request from the master.
PAGE WRITE OPERATION

The S524AD0XD1/D0XF1 can also perform 64-byte page write operation. A page write operation is initiated in the same way as a byte write operation. However, instead of finishing the write operation after the first data byte is transferred, the master can transmit up to 63 additional bytes. The S524AD0XD1/D0XF1 responds with an ACK each time it receives a complete byte of data (see Figure 5-11).

The S524AD0XD1/D0XF1 automatically increments the word address pointer each time it receives a complete data byte. When one byte is received, the internal word address pointer increments to the next address so that the next data byte can be received.

If the master transmits more than 64 bytes before it generates a stop condition to end the page write operation, the S524AD0XD1/D0XF1 word address pointer value “rolls over” and the previously received data is overwritten. If the master transmits less than 64 bytes and generates a stop condition, the S524AD0XD1/D0XF1 writes the received data to the corresponding EEPROM address.

During a page write operation, all inputs are disabled and there would be no response to additional requests from the master until the internal write cycle is completed.

Figure 5-11. Page Write Operation
POLLING FOR AN ACK SIGNAL

When the master issues a stop condition to initiate a write cycle, the S524AD0XD1/D0XF1 starts an internal write cycle. The master can then immediately begin polling for an ACK from the slave device to determine whether the write cycle is completed.

To poll for an ACK signal in a write operation, the master issues a start condition followed by the slave address. As long as the S524AD0XD1/D0XF1 remains busy with the write operation, no ACK is returned. When the S524AD0XD1/D0XF1 completes the write operation, it returns an ACK and the master can then proceed with the next read or write operation (see Figure 5-12).

Figure 5-12. Master Polling for an ACK Signal from a Slave Device
HARDWARE-BASED WRITE PROTECTION

You can also write-protect the entire memory area of the S524AD0XD1/D0XF1. This write protection is controlled by the state of the Write Protect (WP) pin.

When the WP pin is connected to VCC, any attempt to write a value to it is ignored. The S524AD0XD1/D0XF1 will acknowledge slave address, word address, and data bytes. But the write cycle will not be started when a stop condition is generated. By connecting the WP pin to VSS, the write function is allowed for the entire memory.

These write protection features effectively change the EEPROM to a ROM in order to protect data from being overwritten.

CURRENT ADDRESS BYTE READ OPERATION

The internal word address pointer maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either read or write) was to the address “n”, the next read operation would be to access data at address “n+1”.

When the S524AD0XD1/D0XF1 receives a slave address with the R/W bit set to “1”, it issues an ACK and sends the eight bits of data. In a current address byte read operation, the master does not acknowledge the data, and it generates a stop condition, forcing the S524AD0XD1/D0XF1 to stop the transmission (see Figure 5-13).

![Figure 5-13. Current Address Byte Read Operation](image)
RANDOM ADDRESS BYTE READ OPERATION

Using random read operations, the master can access any memory location at any time. Before it issues the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. This operation is performed in the following steps:

1. The master first issues a start condition, the slave address, and the word address (the first and the second addresses) to be read. (This step sets the internal word address pointer of the S524AD0XD1/D0XF1 to the desired address.)

2. When the master receives an ACK for the word address, it immediately re-issues a start condition followed by another slave address, with the R/W bit set to “1”.

3. The S524AD0XD1/D0XF1 then sends an ACK and the 8-bit data stored at the pointed address.

4. At this point, the master does not acknowledge the transmission, generating a stop condition.

5. The S524AD0XD1/D0XF1 stops transmitting data and reverts to stand-by mode (see Figure 5-14).

Figure 5-14. Random Address Byte Read Operation
SEQUENTIAL READ OPERATION

Sequential read operations can be performed in two ways: current address sequential read operation, and random address sequential read operation. The first data is sent in either of the two ways, current address byte read operation or random address byte read operation described earlier. If the master responds with an ACK, the S524AD0XD1/D0XF1 continues transmitting data. If the master does not issue an ACK, generating a stop condition, the slave stops transmission, ending the sequential read operation.

Using this method, data is output sequentially from address “n” followed by address “n+1”. The word address pointer for read operations increments to all word addresses, allowing the entire EEPROM to be read sequentially in a single operation. After the entire EEPROM is read, the word address pointer “rolls over” and the S524AD0XD1/D0XF1 continues to transmit data for each ACK it receives from the master (see Figure 5-15).

![Figure 5-15. Sequential Read Operation](image)

Figure 5-15. Sequential Read Operation
ELECTRICAL DATA

Table 5-2. Absolute Maximum Ratings

(T_A = 25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V<sub>CC</sub></td>
<td>–</td>
<td>– 0.3 to 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V<sub>IN</sub></td>
<td>–</td>
<td>– 0.3 to 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>V<sub>O</sub></td>
<td>–</td>
<td>– 0.3 to 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T<sub>A</sub></td>
<td>–</td>
<td>– 40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T<sub>STG</sub></td>
<td>–</td>
<td>– 65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>V<sub>ESD</sub></td>
<td>HBM</td>
<td>5000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-3. D.C. Electrical Characteristics

(T_A = – 25 °C to + 70 °C (Commercial), – 40 °C to + 85 °C (Industrial), V_{CC} = 1.8 V to 5.5 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>V<sub>IL</sub></td>
<td>SCL, SDA, A0, A1, A2</td>
<td>–</td>
<td>–</td>
<td>0.3 V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>V<sub>IH</sub></td>
<td>0.7 V<sub>CC</sub></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>I<sub>Ll</sub></td>
<td>V<sub>IN</sub> = 0 to V<sub>CC</sub></td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>I<sub>Lo</sub></td>
<td>V<sub>O</sub> = 0 to V<sub>CC</sub></td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Output Low voltage</td>
<td>V<sub>OL</sub></td>
<td>I<sub>OL</sub> = 0.15 mA, V<sub>CC</sub> = 1.8 V</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>OL</sub> = 2.1 mA, V<sub>CC</sub> = 2.5 V</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>Write</td>
<td>V<sub>CC</sub> = 5.5 V, 400 kHz</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 1.8 V, 100 kHz</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>I<sub>CC3</sub></td>
<td>V<sub>CC</sub> = 5.5 V, 400 kHz</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I<sub>CC4</sub></td>
<td>V<sub>CC</sub> = 1.8 V, 100 kHz</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>µA</td>
</tr>
<tr>
<td>Stand-by current</td>
<td>I<sub>CC5</sub></td>
<td>V<sub>CC</sub> = SDA = SCL = 5.5 V, all other inputs = 0 V</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>I<sub>CC6</sub></td>
<td>V<sub>CC</sub> = SDA = SCL = 1.8 V, all other inputs = 0 V</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-3. D.C. Electrical Characteristics (Continued)

\(T_A = -25 ^\circ C \) to \(+70 ^\circ C \) (Commercial), \(-40 ^\circ C \) to \(+85 ^\circ C \) (Industrial), \(V_{CC} = 1.8 \) V to \(5.5 \) V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>(C_{IN})</td>
<td>25 (^\circ)C, 1MHz, (V_{CC} = 5) V, (V_{IN} = 0) V, A0, A1, A2, SCL and WP pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Input/Output capacitance</td>
<td>(C_{I/O})</td>
<td>25 (^\circ)C, 1MHz, (V_{CC} = 5) V, (V_{I/O} = 0) V, SDA pin</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-4. A.C. Electrical Characteristics

\(T_A = -25 ^\circ C \) to \(+70 ^\circ C \) (Commercial), \(-40 ^\circ C \) to \(+85 ^\circ C \) (Industrial), \(V_{CC} = 1.8 \) V to \(5.5 \) V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>(V_{CC} = 1.8) to (5.5) V (Standard Mode)</th>
<th>(V_{CC} = 2.5) to (5.5) V (Fast Mode)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External clock frequency</td>
<td>(F_{clk})</td>
<td>–</td>
<td>0 to 400 kHz</td>
<td>0 to 1000 kHz</td>
<td>kHz</td>
</tr>
<tr>
<td>Clock High time</td>
<td>(t_{HIGH})</td>
<td>–</td>
<td>0.6 to 0.5 (\mu s)</td>
<td>0.5 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Clock Low time</td>
<td>(t_{LOW})</td>
<td>–</td>
<td>1.3 to 0.5 (\mu s)</td>
<td>0.5 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Rising time</td>
<td>(t_{R})</td>
<td>SDA, SCL</td>
<td>0.3 to 0.3 (\mu s)</td>
<td>0.3 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Falling time</td>
<td>(t_{F})</td>
<td>SDA, SCL</td>
<td>0.3 to 0.3 (\mu s)</td>
<td>0.3 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Start condition hold time</td>
<td>(t_{HD:STA})</td>
<td>–</td>
<td>0.6 to 0.25 (\mu s)</td>
<td>0.25 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Start condition setup time</td>
<td>(t_{SU:STA})</td>
<td>–</td>
<td>0.6 to 0.25 (\mu s)</td>
<td>0.25 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Data input hold time</td>
<td>(t_{HD:DAT})</td>
<td>–</td>
<td>0 to 0</td>
<td>0 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Data input setup time</td>
<td>(t_{SU:DAT})</td>
<td>–</td>
<td>0.1 to 0.1 (\mu s)</td>
<td>0.1 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>WP hold time</td>
<td>(t_{HD:WP})</td>
<td>–</td>
<td>1.3 to 1.3 (\mu s)</td>
<td>1.3 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>WP setup time</td>
<td>(t_{SU:WP})</td>
<td>–</td>
<td>0.6 to 0.6 (\mu s)</td>
<td>0.6 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Stop condition setup time</td>
<td>(t_{SU:STO})</td>
<td>–</td>
<td>0.6 to 0.25 (\mu s)</td>
<td>0.25 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Bus free time</td>
<td>(t_{BUF})</td>
<td>Before new transmission</td>
<td>1.3 to 1.3 (\mu s)</td>
<td>1.3 to 1 (\mu s)</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Data output valid from clock low</td>
<td>(t_{AA})</td>
<td>–</td>
<td>0.1 to 0.1 (\mu s)</td>
<td>0.9 to 1 (\mu s)</td>
<td>0.05 to 0.55 (\mu s)</td>
</tr>
<tr>
<td>Noise spike width</td>
<td>(t_{SP})</td>
<td>–</td>
<td>50 to 50 (ns)</td>
<td>50 to 50 (ns)</td>
<td>(ns)</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>(t_{WR})</td>
<td>–</td>
<td>5 to 5 (ms)</td>
<td>5 to 5 (ms)</td>
<td>(ms)</td>
</tr>
</tbody>
</table>

NOTES:
1. Upon customers request, up to 400 kHz (Max.) in standard mode and 1 MHz in fast mode are available.
2. When acting as a transmitter, the S524AD0XD1/D0XF1 must provide an internal minimum delay time to bridge the undefined period (minimum 300 ns) of the falling edge of SCL. This is required to avoid unintended generation of a start or stop condition.
Figure 5-16. Timing Diagram for Bus Operations

Figure 5-17. Write Cycle Timing Diagram
OVERVIEW

The S524E0XH1 serial EEPROM has a 512K-bit (65,536 bytes) capacity, supporting the standard I²C™-bus serial interface. It is fabricated using Samsung’s most advanced CMOS technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). One of its major features is a hardware-based write protection circuit for the entire memory area. Hardware-based write protection is controlled by the state of the write-protect (WP) pin. Using one-page write mode, you can load up to 128 bytes of data into the EEPROM in a single write operation. Another significant feature of the S524E0XH1 is its support for fast mode and standard mode.

FEATURES

I²C-Bus Interface
- Two-wire serial interface
- Automatic word address increment

EEPROM
- 512K-bit (65,536 bytes) storage area
- 128-byte page buffer
- Hardware-based write protection for the entire EEPROM (using the WP pin)
- EEPROM programming voltage generated on chip
- 500,000 erase/write cycles
- 50 years data retention

Operating Characteristics
- Operating voltage
 - 1.8 V to 5.5 V
- Operating current
 - Maximum write current: < 3 mA at 5.5 V
 - Maximum read current: < 400 μA at 5.5 V
 - Maximum stand-by current: < 5 μA at 5.5 V
- Operating temperature range
 - –25°C to +70°C (commercial)
 - –40°C to +85°C (industrial)
- Operating clock frequencies
 - 400 kHz at standard mode
 - 1 MHz at fast mode
- Electrostatic discharge (ESD)
 - 5,000 V (HBM)
 - 500 V (MM)

Packages
- 8-pin DIP, and SOP
NOTE: Dimensions are in millimeters.

Figure 7-1. 8-DIP-300 Package Dimensions
NOTE: Dimensions are in millimeters.

Figure 7-2. 8-SOP-225 Package Dimensions
NOTES:
1. Dimensions are in millimeters.
2. Package dimensions conform to JEDEC MO-153-AA.

Figure 7-3. 8-TSSOP Package Dimensions
OVERVIEW

This application note describes an interface between the S524A40X21 serial EEPROM and Samsung S3C8095/S3C72F5 microcontroller. The S524A series support the standard I²C™-bus serial data transmission protocol. S3C8095 is a 8-bit general purpose microcontroller, and S3C72F5 is a 4-bit general purpose microcontroller.

A typical circuit configuration between S3C8095/S3C72F5 and S524A40X21 is shown in Figure 8-1 and 8-2. As shown below, using the address inputs (A0, A1, A2), up to eight S524A40X21s can be connected to the same bus. The limited number of S524A series products (1 to 16 K-bit) which can be connected is shown in Table 8-1. The interface to the S3C8095/S3C72F5 uses there 2 I/O port lines. One of the lines is used to generate the serial clock (SCL), and the other is used as a bidirectional data line (SDA). It is recommended that an external pull-up resistor is configured to the SCL, SDL line. The S3C8095/S3C72F5 operate as a master which initiates a data transfer by generating the start condition on the bus, and a slave device S524A40X21 responds to the command issued by a master. The demonstration program which follows shows how the S524A40X21 serial EEPROM can be interfaced to the S3C8095/S3C72F5 microcontroller.

Table 8-1. S524A Series (1 to 16K-bit)

<table>
<thead>
<tr>
<th>Device</th>
<th>EEPROM Size</th>
<th>Max Device Per Bus</th>
<th>Device Address Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>S524A40X10/40X11</td>
<td>1K-bit</td>
<td>8</td>
<td>A0, A1, A2</td>
</tr>
<tr>
<td>S524A40X20/40X21</td>
<td>2K-bit</td>
<td>8</td>
<td>A0, A1, A2</td>
</tr>
<tr>
<td>S524A40X40/40X41</td>
<td>4K-bit</td>
<td>4</td>
<td>A1, A2</td>
</tr>
<tr>
<td>S524A60X81</td>
<td>8K-bit</td>
<td>2</td>
<td>A2</td>
</tr>
<tr>
<td>S524A60X51</td>
<td>16K-bit</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 8-1. Typical Circuit Configuration 1

Figure 8-2. Typical Circuit Configuration 2
This program demonstrates how the S524A40X21 serial EEPROM can be interfaced to the S3C8095 microcontroller. This software includes random address byte read and byte write operation.

If you use the 8 MHz crystal in Figure 8-1, SCL frequency will be approximately 50 kHz.

R14 = Word-address
R15 = Write-data to the EEPROM
ReadData = Read-data from the EEPROM

SDA EQU 7H ; SDA port (P1.7)
SCL EQU 6H ; SCL port (P1.6)
ReadData EQU 40H

Equation Table

Random Address Byte Read

Start → Slave Addr.(A0) → Word Addr. → Start → #A1h → Data

ReadByte:

PUSH R0
PUSH R1
PUSH R2
CALL IICbus_Start ; IIC bus protocol start

LD R0,#0A0h ; Slave address (A0)
CLR R2
RD_TxStart LD R1,#8 ; 1byte (8bit) count
RD_DataShift RLC R0 ; Rotate left Data (= R0)
TP C, RD_Data_1 ; Bit value check(0 or 1)
RD_Data_0 AND P1,#0FFh-(01<<SDA) ; Data "0" transfer
CALL IIC_Clock_1Bit
RD_Count8bit DJNZ R1,R D_DataShift ; Data “0” transfer
AND P1CONH,#00111111B ; SDA (P1.7) = Input Mode
OR P1,#01<<SCL ; Acknowledge clock
NOP
NOP
NOP
TM P1,#01<<SDA ; Ack in?
JP NZ,CommuniFail
AND P1,#0FFh-(01<<SCL) ; SDA (P1.7) = Output Mode
OR P1CONH,#01000000B

; (next page continued)
CP R2,#02 ; TxCount = R2
JR UGE,RxData
CP R2,#01
JR UGE,ReStart
;
LD R0,R14 ; TxCount++
INC R2 ; TxCount++
JR RD_TxStart
;
ReStart OR P1,#11000000B ; P1.7/P1.6 ← High (SDA,SCL)
NOP
NOP
NOP
NOP
AND P1,#0FFh-(01<<SDA) ; IIC Start Condition
NOP
NOP
NOP
NOP
NOP
AND P1,#0FFh-(01<<SCL)
;
LD R0,#0A1h ;Slave Address for reading
INC R2 ; TxCount++
JR RD_TxStart
;
RxData AND P1CONH,#00111111B ; SDA (P1.7) = Input Mode
NOP
LD R1,#8
RotateLoop OR P1,#01<<SCL ; SCL ← High
TM P1,#01<<SDA ; Data value check
JR NZ,SetCF
RCF
JR DataRotate
;
SetCF SCF
DataRotate RLC R0
AND P1,#0FFh-(01<<SCL) ; SCL ← Low
DJNZ R1,RotateLoop ; End of 1byte(8bit) ?
LD ReadData,R0
OR P1CONH,#01000000B ; SDA (P1.7) = Output
OR P1,#01<<SDA ; SDA ← High (ACK=High): communication finished
NOP
NOP
OR P1,#01<<SCL ; SCL ← High (9th clock)
NOP
NOP
AND P1,#0FFh-(01<<SCL) ; SCL ← Low
;
(next page continued)
APPLICATION NOTE SERIAL EEPROM

GenicStop CALL IICbus_Stop
POP R2
POP R1
POP R0
RET

; RD_Data_1 OR P1,#01<<SDA ; Data “1” transfer
CALL IIC_Clock_1Bit
JP RD_Count8bit

; ***
; ****************** Byte Write Operation *******************
; ***
; Start → Slave Addr.(A0) → Word addr. → Data
; ***

Write1Byte: PUSH R0
PUSH R1
PUSH R2
CALL IICbus_Start ; IIC bus protocol start

LD R0,#0A0h ; Slave address
CLR R2
WR_TxStart LD R1,#8 ; 1 Byte (8bit) count
WR_DataShift RLC R0
JR C,WR_Data_1
WR_Data_0 AND P1,#0FFh–(01<<SDA) ; Data “0” transfer
CALL IIC_Clock_1Bit

WR_Count8bit DJNZ R1,WR_DataShift ; 1byte check

AND P1CONH,#00111111B ; SDA (P1.7) = Input Mode
OR P1,#01<<SCL ; Acknowledge clock
NOP
NOP
NOP
TM P1,#01<<SDA ; Ack in ?
JR NZ,CommuniFail

; AND P1,#0FFh–(01<<SCL)
OR P1CONH,#01000000B ; SDA(P1.7) = Output Mode

; CP R2,#2
JR UGE,TxStop
CP R2,#1
JR UGE,WriteData
LD R0,R14 ; Word Address
INC R2 ; TxCount++
JR WR_TxStart

; (next page continued)
WriteData LD R0,R15 ; Data to be written to the EEPROM
INC R2 ; TxCount++
JR WR_TxStart
;
WR_Data_1 OR P1,#01<<SDA ; Data “1” transfer
CALL IIC_Clock_1Bit
JR WR_Count8bit
;
CommuniFail AND P1,#0FFh–(01<<SCL)
NOP
NOP
OR P1CONH,#01000000B ; SDA(P1.7) = Output Mode
JP GenIicStop
TxStop JP GenIicStop

IICbus_Start OR P1,#11000000B ; P1.7/P1.6 ← High (SDA, SCL)
NOP
NOP
NOP
AND P1,#0FFh–(01<<SCL)
NOP
NOP
NOP
NOP
NOP
AND P1,#0FFh–(01<<SDA)
NOP
NOP
NOP
NOP
NOP
RET

IIC_Clock_1Bit OR P1,#01<<SCL; ; Clock Generation.
NOP
NOP
NOP
AND P1,#0FFh–(01<<SCL)
NOP
RET

IICbus_Stop AND P1,#0FFh–(01<<SDA)
NOP
NOP
NOP
OR P1,#01<<SCL
NOP
NOP
NOP
NOP
OR P1,#01<<SDA ; SDA ← High (Stop condition)
RET
This program demonstrates how the S524A40X21 serial EEPROM can be interfaced to the SAMSUNG S3C72F5 microcontroller. This software includes random address byte read and byte write operation.

If you use the 5 MHz crystal oscillator, SCL frequency will be approximately 50 kHz.

Equation Table

SDA_PORT	EQU	P0.0
SCL_PORT	EQU	P0.1
ReadAddr	EQU	20H
ReadData	EQU	22H
WriteAddr	EQU	30H
WriteData	EQU	32H
PMG1_BUF	EQU	40H

Random Address Byte Read

Start → Slave Addr. (A0) → Word Addr. → Start → #A1h → Data

Read1Byte: CALL IICbus_Start ; IIC Interface start
LD Y,#0H
LD EA,#0A0h ; Slave Address (A0)
RD_TxStart LD Z,#7 ; 1Byte (8bit)
RD_DataShift
ADCT C
JP RD_Data_0

RD_Data_1 BITSDSA_PORT CALL IIC_Clock_1Bit
JP RD_Count8bit

RD_Data_0 BITRSDA_PORT CALL IIC_Clock_1Bit
JP RD_Count8bit

RD_Count8bi DECS Z
JP RD_DataShift
CALL SdaInMode
BITS SCL_PORT
NOP
NOP

; (next page continued)
BTSF SDA_PORT ; ACK Check
JP CommuniFail
BITR SCL_PORT
CALL SdaOutMode
CPSE Y,#2H ; TxCount = Y
JP NextR1
JP RxData
NextR1 CPSE Y,#1H
JP NextR2
JP ReStart

NextR2 LD EA,ReadAddr ; Pointed Address to Read
INC S Y ; TxCount++
JP RD_TxStart

ReStart BITS SDA_PORT ; SDA HIGH
BITS SCL_PORT ; SCL HIGH
NOP
NOP
NOP
NOP
NOP
BITR SDA_PORT ; Start Condition
NOP
NOP
NOP
NOP
BITR SCL_PORT
NOP
LD EA,#0A1h ; Slave Address for Reading (A1)
INC S Y ; Tx Count ++
JP RD_TxStart

RxData CALL SdaInMode
NOP
LD EA,#00H ; Clear
LD Z,#7 ; 1Byte Count(8bit)

RotateLoop BITS SCL_PORT
NOP
NOP
NOP
BTSF SDA_PORT
JP SetCF
RCF ; Data "0"
JP DataRotate

SetCF SCF ; Data "1"

; (next page continued)
DataRotate
ADC EA,EA
BITR SCL_PORT
NOP
NOP
NOP
DECS Z
JP RotateLoop
LD ReadData,EA ; Save Read Data
CALL SdaOutMode
BITS SDA_PORT
NOP
NOP
BITS SCL_PORT
NOP
NOP
BITR SCL_PORT
NOP

GenlicStop
CALL IICbus_Stop
RET

; ***
;****************** Byte Write Operation *******************
; Start → Slave Addr.(A0) → Word addr. → Data
; ***

Write1Byte:
CALL IICbus_Start
LD Y,#0H
LD EA,#Slave_WR ; Slave Address (A0)
WR_TxStart LD Z,#7 ; 1Byte (8bit) count
WR_DataStart ADC EA,EA
BTST C
JP WR_Data_0

WR_Data_1 BITS SDA_PORT ; Data “1” transfer
CALL IIC_Clock_1Bit
BITR SDA_PORT
JP WR_Count8bit

WR_Data_0 BTR SDA_PORT ; Data “0” transfer
CALL IIC_Clock_1Bit

WR_Count8bit DECS Z ; 1byte check
JP WR_DataShift
CALL SdaInMode
BITS SCL_PORT

; (next page continued)
NOP
NOP
NOP
BTSF SDA_PORT ; ACK Check
JP CommuniFail

BITR SCL_PORT
CALL SdaOutMode
CPSE Y,#2H
JP NextW1
JP TxStop

NextW1 CPSE Y,#1H
JP NextW2
JP WriteData

NextW2 LD EA,WriteAddr ; Address to be written
INCS Y
JP WR.TxStart

WriteData LD EA,WriteData ; Data to be written
INCS Y
JP WR.TxStart

TxStop JP GenlicStop

IICbus_Start CALL SDASCL_OutMode

IICbus_Stop BITR SDA_PORT ; Start Condition
RET

IICbus_Stop BITR SDA_PORT
NOP
NOP
BITS SCL_PORT
NOP
NOP
NOP
NOP
BITS SDA_PORT ; Stop Condition
RET

; (next page continued)
IIC_Clock_1Bit

BITS SCL_PORT
NOP
NOP
NOP
BITR SCL_PORT
RET

SdaInMode

PUSH EA
LD EA,PMG1_BUF
AND A,#1110B
LD PMG1_BUF,EA
SMB 15
LD PMG1,EA ; SDA INPUT
SMB 0
POP EA
RET

SdaOutMode

PUSH EA
SMB 0
LD EA,PMG1_BUF
OR A,#0001B
LD PMG1_BUF,EA
SMB 15
LD PMG1,EA ; SDA OUTPUT
SMB 0
POP EA
RET

CommuniFail

BITR SCL_PORT
NOP
NOP
CALL SdaOutMode
JP GenlicStop

SDASCL_OutMode

BITS EMB
SMB 15
LD EA,#00000001B
LD PNE1,EA ; N-ch open drain (P0.0)
LD EA,#00000011B
LD PMG1,EA ; SCL,SDA OUTPUT
LD PUMOD1,EA ; Pull-up enable
SMB 0
LD PMG1_BUF,EA
BITS SDA_PORT
NOP
BITS SCL_PORT
RET
Marking Information

(1) Operating Voltage
- A = 1.8 V to 5.5 V
- L = 2.0 V to 5.5 V
- C = 2.5 V to 5.5 V

(2) EEPROM Density
- 1 = 1K-bit
- 2 = 2K-bit
- 4 = 4K-bit
- 8 = 8K-bit
- 5 = 16K-bit
- 9 = 32K-bit
- B = 64K-bit
- D = 128K-bit
- F = 256K-bit
- H = 512K-bit

(3) Write Protection
- 0 = Hardware and software
- 1 = Hardware Only

(4) Package Type
- D = DIP type
- S = SOP type
- R = TSSOP type

(5) Temperature Range
- C = -25°C to 70°C
- I = -40°C to 85°C

(6) Work Week Code
- (TSSOP)

(7) Assembly Site Code

DIP/SOP

A (1) F (2) 1 (3) D (4) C (5)

S (6) 1 1 4 (7)

TSSOP

A F 1 R C

Ordering Information

<table>
<thead>
<tr>
<th>(1) Series Name</th>
<th>(2) Operation Voltage</th>
<th>(3) Samsung’s Internal Management Data</th>
<th>(4) ROM Size</th>
<th>(5) Write Protection</th>
<th>(6) Package Type</th>
<th>(7) Temperature Range</th>
<th>(8) Package Type</th>
<th>(9) Customer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>24: I²C interface</td>
<td>C: 2.5 V - 5.5 V</td>
<td>1 = 1K-bit</td>
<td>1 = Hardware and software</td>
<td>0 = Hardware and software</td>
<td>D = DIP</td>
<td>C = -25°C to 70°C</td>
<td>B = Tube</td>
<td>0 = None</td>
</tr>
<tr>
<td></td>
<td>L: 2.0 V - 5.5 V</td>
<td>2 = 2K-bit</td>
<td>1 = Hardware only</td>
<td></td>
<td>R = TSSOP</td>
<td>I = -40°C to 85°C</td>
<td>T = Tape & Reel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: 1.8 V - 5.5 V</td>
<td>4 = 4K-bit</td>
<td></td>
<td></td>
<td>S = SOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 = 8K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = 16K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 = 32K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B = 64K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D = 128K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F = 256K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H = 512K-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S524A SERIES EEPROM ORDER FORM

Device Name: S524A______-______

Delivery Dates and Quantities:

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Required Delivery Date</th>
<th>Quantity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer sample</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please answer the following questions:

☐ What is the purpose of this order?
 ☐ New product development ☐ Upgrade of an existing product
 ☐ Replacement of an existing EEPROM ☐ Other

If you are replacing an existing EEPROM, please indicate the former product name

()

☐ What are the main reasons you decided to use a Samsung EEPROM in your product? Please check all that apply.
 ☐ Price ☐ Product quality ☐ Features and functions
 ☐ Development system ☐ Technical support ☐ Delivery on time
 ☐ Used same product before ☐ Quality of documentation ☐ Samsung reputation

☐ Application (Product Model ID: ________________________)
 ☐ Audio/Video ☐ Communications ☐ Home Appliance
 ☐ LCD Consumer ☐ Office Automation ☐ Industrials
 ☐ Remocon ☐ Identification ☐ Other

Please describe in detail its application

__

Customer Information:
Company Name: ___________________ Telephone number _________________________

Signatures: ______________________________ ______________________________
(Person placing the order) (Technical Manager)

(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)
Serial EEPROM Selection Guide

S524A40X10/40X20/40X40

S524A40X11/40X21/40X41/60X81/60X51

S524AB0X91/B0XB1

S524AD0XD1/D0XF1

S524AE0XH1

Packaging Information

Application Note

Marking Information

Ordering Information